首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural-abundance delta15N showed that nitrate generated from commercial land application of swine (Sus scrofa domesticus) waste within a North Carolina Coastal Plain catchment was being discharged to surface waters by ground water passing beneath the sprayfields and adjacent riparian buffers. This was significant because intensive swine farms in North Carolina are considered non-discharge operations, and riparian buffers with minimum widths of 7.6 m (25 ft) are the primary regulatory control on ground water export of nitrate from these operations. This study shows that such buffers are not always adequate to prevent discharge of concentrated nitrate in ground water from commercial swine farms in the Mid-Atlantic Coastal Plain, and that additional measures are required to ensure non-discharge conditions. The median delta15N-total N of liquids in site swine waste lagoons was +15.4 +/- 0.2% vs. atmospheric nitrogen. The median delta15N-NO3 values of shallow ground water beneath and adjacent to site sprayfields, a stream draining sprayfields, and waters up to 1.5 km downstream were + 15.3 +/- 0.2 to + 15.4 +/- 0.2%. Seasonal and spatial isotopic variations in lagoons and well waters were greatly homogenized during ground water transport and discharge to streams. Neither denitrification nor losses of ammonia during spraying significantly altered the bulk ground water delta15N signal being delivered to streams. The lagoons were sources of chloride and potassium enrichment, and shallow ground water showed strong correlation between nitrate N, potassium, and chloride. The 15N-enriched nitrate in ground water beneath swine waste sprayfields can thus be successfully traced during transport and discharge into nearby surface waters.  相似文献   

2.
Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions.  相似文献   

3.
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.  相似文献   

4.
ABSTRACT: Application of fertilizer can degrade quality of runoff, particularly during the first post-application, runoff-producing storm. This experiment assessed and compared runoff quality impacts of organic and inorganic fertilizer application for a single simulated storm occurring seven days following application. The organic fertilizers used were poultry (Gallus gallus domesticus) litter, poultry manure, and swine (Sus scrofa domesticus) manure. All fertilizers were applied at an application rate of 217.6 kg N/ha. Simulated rainfall was applied at 50 mm/h for an average duration of 0.8 h. Runoff samples were collected, composited, and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliforms (FC), and fecal streptococci (FS). Application of the fertilizers did not alter the hydrologic characteristics of the receiving plots relative to the control plots. Concentrations of fertilizer constituents were almost always greater from treated than from control plots and were usually much greater. Flow-weighted mean concentrations of NH3-N, PO4-P, and TP were highest for the inorganic fertilizer treatment (42.0, 26.6, and 27.9 mg/L, respectively). Runoff COD and TSS concentrations were greatest for the poultry litter treatment. Concentrations of FC and FS were greater for fertilized than for control plots with no differences among fertilized plots, but FC concentrations for all treatments were in excess of Arkansas' primary and secondary contact standards. Mass losses of fertilizer constituents were low (≤ 3 kg/ha) and were small proportions (≤ 3 percent) of amounts applied.  相似文献   

5.
Abstract: A nitrogen (N) mass‐balance budget was developed to assess the sources of N affecting increasing ground‐water nitrate concentrations in the 960‐km2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80‐90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12‐month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N‐isotope values for six spring waters (δ15N‐NO3 = 3.3 to 6.3‰) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground‐water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground‐water movement and denitrification. A geographical‐based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin.  相似文献   

6.
四川省农村面源污染问题的环境保护对策   总被引:1,自引:0,他引:1  
朱清  甘欣  王溢谦 《四川环境》2011,30(6):88-93
农村面源污染主要来源于化肥、农药、畜禽养殖粪便、农村污水、生活垃圾和农作物秸秆等。“十二五”期间,国家将农业面源污染纳入了减排计划,作为农业大省的四川农业面源污染也比较严重,制定相关政策措施、采用先进技术显得尤为必要。文章综述了四川农村面源污染的现状以及对生态环境的影响,提出解决办法,最后对如何缓解目前四川农村面源污染提出了合理化建议与对策。  相似文献   

7.
Golf courses are often considered by the public to be significant nitrogen (N) and phosphorus (P) nonpoint sources but only limited information exists on nutrient concentrations and loads in golf course groundwater. In this study, we measured N and P concentrations in groundwater and available surface water at six randomly selected Iowa golf courses to assess the loading risk posed by these facilities to groundwater and local rivers. At each course, three shallow monitoring wells were installed, one each on representative tee, fairway, and rough locations. Wells and available surface water were sampled on eight occasions during 2015 and 2016. NO3‐N concentrations were not detected above 1 mg/L at three of the six courses monitored in this study and the overall mean NO3‐N concentration in Iowa golf courses was 2.2 mg/L. The mass of NO3‐N recharged to groundwater averaged 3.3 kg/ha at the six courses, which represents approximately one‐tenth of the NO3‐N load exported by the watershed that contains the course and represented approximately 0.1 to 8% of the fertilizer N applied. Groundwater orthophosphorus concentrations averaged 0.13 mg/L and were similar to those measured in a variety of settings across Iowa. Study results should prove useful in evaluating nutrient contributions from golf courses in Midwestern states where nutrient reduction strategies are being pursued.  相似文献   

8.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

9.
This study applied hydrogeological characterization and isotope investigation to identify source locations and to trace a plume of ground water contaminated by nitrate. Most of the study site is agricultural fields with the remainder being residential. A poultry farm is also within the study area, so that potential point and nonpoint sources were present. Estimates of seasonal ground water recharge from irrigation and precipitation, leakage of sewage, and the regional ground water flow were linked to the seasonal changes in isotopic values. Ground water recharge largely occurred in spring and summer following precipitation or irrigation, depending on the locations. Natural and fertilized soils were identified as nonpoint sources of nitrate contamination in this area, while septic and animal wastes were identified as small point sources. The seasonal changes in the relative impact of these sources on ground water contamination were related to such factors as source distribution, the aquifer confining condition, precipitation rate, infiltration capacity, recharge rate, and the land use pattern.  相似文献   

10.
Rapid increases in the swine (Sus scrofa domestica) population in the 1990s and associated potential for nitrate N pollution of surface waters led the state of North Carolina to adopt stringent waste management regulations in 1993. Our objectives were to characterize (i) nitrate N movement from waste application fields (WAFs) in shallow ground water, and (ii) soil, hydrologic, and biological factors influencing the amount of nitrate N in the adjacent stream. A ground water monitoring study was conducted for 36 mo on a swine farm managed under new regulations. Water table contours and lack of vertical gradients indicated horizontal flow over most of the site. Nitrate N concentrations in water from shallow wells in WAFs averaged 30 +/- 19 mg L(-1) and delta15N ratios for nitrate N were between +20 and +25 per mil. Nitrate N concentration decreased from field-edge to streamside wells by 22 to 99%. Measurement of delta18O and delta15N enrichment of nitrate in ground water throughout the WAF-riparian system indicated that denitrification has not caused significant 15N enrichment of nitrate. Over a 24-mo period, delta15N ratios for nitrate N in the stream approached delta15N ratios for nitrate N in ground water beneath WAFs indicating delivery of some waste-derived nitrate N to the stream in shallow ground water. Nitrate N concentrations in the stream were relatively low, averaging 1 mg L(-1). Dilution of high nitrate N water in shallow horizontal flow paths with low nitrate N water from deeper horizontal flow paths at or near the stream, some denitrification as ground water discharges through the stream bottom, and some denitrification in riparian zone contributed to this low nitrate N concentration.  相似文献   

11.
Excessive nitrate leaching from the U.S. Corn Belt has created serious water quality problems and contributed to the expansion of the hypoxic zone in the Gulf of Mexico. We evaluated the effect of implementing the late spring nitrate test (LSNT) for corn (Zea mays L.) grown within a 400-ha, tile-drained subbasin in central Iowa. Surface water discharge and NO3 concentrations from the treated subbasin and two adjacent subbasins receiving primarily fall-applied, anhydrous ammonia were compared. In two of four years, the LSNT method significantly reduced N fertilizer applications compared with the farmers' standard practices. Average corn yield from LSNT fields and nonlimiting N fertilizer check strips was not significantly different. Autoregressive (AR) models using weekly time series in surface water NO3 concentration differences between the LSNT and control subbasins indicated no consistent significant differences during the pre-LSNT (1992-1996) period. However, by the second year (1998) of the treatment period (1997-2000), NO3 concentrations in surface water from the treated subbasin were significantly lower than the concentrations coming from both control basins. Annual average flow-weighted NO3 concentrations for the last two years (1999-2000) were 11.3 mg N L(-1) for the LSNT and subbasin and 16.0 mg N L(-1) for the control subbasins. Based on these values and the AR models, widespread adoption of the LSNT program for managing N fertilizer where fall N application is typically practiced could result in a > or = 30% decrease for NO3 concentrations in surface water.  相似文献   

12.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

13.
Nitrogen fertilizers are used to maintain optimum turfgrass quality, but off-site movement of this primary nutrient can affect water quality. We conducted a 4-yr study (1998-2001) designed to measure nitrate N runoff from turfgrass, gathering data to be used in the model. The process-based Root Zone Water Quality Model (RZWQM) was used to predict nitrate associated with runoff from turfgrass. The measurements were made on 12 sloped (5%), 25-m2 plots of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.], managed as golf course fair-ways and exposed to natural and simulated rainfall. Surface runoff volume and nitrate N loads were monitored after applying simulated rainfall at an average intensity of 27.4 mm h(-1). The irrigation occurred (25 or 50 mm) 4 through 168 h after treatment with various rates of N fertilizers for 1998-2001. RZWQM adequately simulated water runoff volumes (<19%; nonsignificant, paired t test) in the first three (normal or wet) years, but overpredicted (70%) in the fourth, dry year. RZWQM overpredicted nitrate N loads by a factor of 1.3 for the first three years (nonsignificant), and by a factor of almost 6 for the fourth year (highly significant). These overpredictions occurred when the runoff volumes and N loads were very small. The research has shown that refinements to RZWQM are needed for turfgrass management applications.  相似文献   

14.
Knowledge of the balance between nutrient inputs and removals is required for identifying regions that possess an excess or deficit of nutrients. This assessment describes the balance between the agricultural nutrient inputs and removals for nine geographical districts within Arkansas from 1997 to 2001. The total N, P, and K inputs were summed for each district and included inorganic fertilizer and collectable nutrients excreted as poultry, turkey, dairy, and hog manures. Nutrients removed by harvested crops were summed and subtracted from total nutrient inputs to calculate the net nutrient balance. The net balances for N, P, and K were distributed across the hectarage used for row crop, hay, pasture, or combinations of these land uses. Row-crop agriculture predominates in the eastern one-third and animal agriculture predominates in the western two-thirds of Arkansas. Nutrients derived from poultry litter accounted for >92% of the total transportable manure N, P, and K. The three districts in the eastern one-third of Arkansas contained 95% of the row-crop hectarage and had net N and P balances that were near zero or negative. The six districts in the western two-thirds of Arkansas accounted for 89 to 100% of the animal populations, had positive net balances for N and P, and excess P ranged from 1 to 9 kg P ha(-1) when distributed across row-crop, hay, and pasture hectarage. Transport of excess nutrients, primarily in poultry litter, outside of the districts in western Arkansas is needed to achieve a balance between soil inputs and removals of P and N.  相似文献   

15.
Legislation in the United States has recently focused on improving water quality by establishing management practices that limit the quantities of nutrients entering the water supply. Timely application and quantification of the amount of manure applied throughout the grass-growing season can reduce the loss of nutrients into ground or surface water while improving the quality and quantity of grass harvested. During the 2001 and 2002 growing seasons, we measured the effects of different manure application rates on grass yields, grass nutritive value, and soil chemistry on a dairy farm. On-farm estimates of manure N were combined with yield estimates and forage quality measures to evaluate the effects of varying levels of manure application. Yield estimates, N content of grass, and the amount of N in soil and manure were monitored at each cutting for plots amended at different manure application rates. There are three major outcomes of this evaluation: (i) new grass seedings were at higher risk of elevated levels of nitrate N in forage; (ii) increased forage nitrate N at harvest was associated with malfermented silage and increased levels of ammonia N, which resulted in less efficient use of metabolizable protein for milk production; and (iii) increased understanding of N cycling between manure, soil, and plant provided an opportunity to reduce purchased fertilizer.  相似文献   

16.
Research has shown that alum [Al(2)(SO(4))(3).14H(2)O] applications to poultry litter can greatly reduce phosphorus (P) runoff, as well as decrease ammonia (NH(3)) volatilization. However, the long-term effects of fertilizing with alum-treated litter are unknown. The objectives of this study were to evaluate the long-term effects of normal poultry litter, alum-treated litter, and ammonium nitrate (NH(4)NO(3)) on aluminum (Al) availability in soils, Al uptake by tall fescue (Festuca arundinacea Schreb.), and tall fescue yields. A long-term study was initiated in April of 1995. There were 13 treatments (unfertilized control, four rates of normal litter, four rates of alum-treated litter, and four rates of NH(4)NO(3)) in a randomized block design. All fertilizers were broadcast applied to 52 small plots (3.05 x 1.52 m) cropped to tall fescue annually in the spring. Litter application rates were 2.24, 4.49, 6.73, and 8.98 Mg ha(-1) (1, 2, 3, and 4 tons acre(-1)); NH(4)NO(3) rates were 65, 130, 195, and 260 kg N ha(-1) and were based on the amount of N applied with alum-treated litter. Soil pH, exchangeable Al (extracted with potassium chloride), Al uptake by fescue, and fescue yields were monitored periodically over time. Ammonium nitrate applications resulted in reductions in soil pH beginning in Year 3, causing exchangeable Al values to increase from less than 1 mg Al kg(-1) soil in Year 2 to over 100 mg Al kg(-1) soil in Year 7 for many of the NH(4)NO(3) plots. In contrast, normal and alum-treated litter resulted in an increase in soil pH, which decreased exchangeable Al when compared to unfertilized controls. Severe yield reductions were observed with NH(4)NO(3) beginning in Year 6, which were due to high levels of acidity and exchangeable Al. Aluminum uptake by forage and Al runoff from the plots were not affected by treatment. Fescue yields were highest with alum-treated litter (annual average = 7.36 Mg ha(-1)), followed by normal litter (6.93 Mg ha(-1)), NH(4)NO(3) (6.16 Mg ha(-1)), and the control (2.89 Mg ha(-1)). These data indicate that poultry litter, particularly alum-treated litter, may be a more sustainable fertilizer than NH(4)NO(3).  相似文献   

17.
Poultry litter ash as a potential phosphorus source for agricultural crops   总被引:1,自引:0,他引:1  
Maryland will impose restrictions on poultry litter application to soils with excessive P by the year 2005. Alternative uses for poultry litter are being considered, including burning as a fuel to generate electricity. The resulting ash contains high levels of total P, but the availability for crop uptake has not been reported. Our objective was to compare the effectiveness of poultry litter ash (PLA) and potassium phosphate (KP) as a P source for wheat (Triticum aestivum L.) in acidic soils, without and with limestone application. Two acidic soils (pH 4.25 and 4.48) were studied, unlimed or limed to pH 6.5 before cropping. The PLA and KP were applied at 0, 39, and 78 kg P ha(-1), after which wheat was grown. Limestone significantly increased wheat yield, but the P sources without limestone did not. The two P sources were not significantly different as P fertilizer. At the 78 kg P ha(-1) rate, wheat shoot-P concentrations were 1.10 and 1.12 g kg(-1) for the PLA treatment compared with 0.90 and 0.89 g kg(-1) for KP in the nonlimed and limed soils, respectively. Trace element concentrations in wheat shoots from the PLA treatment were less than or equal to KP and the control. The low levels of water-soluble P and metals in the soils and the low metal concentrations in wheat suggest that PLA is an effective P fertilizer. Further studies are needed to determine the optimum application rate of PLA as a P fertilizer.  相似文献   

18.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   

19.
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.  相似文献   

20.
Soil-test N recommendations augmented with PEST-optimized RZWQM simulations   总被引:1,自引:0,他引:1  
Improved understanding of year-to-year late-spring soil nitrate test (LSNT) variability could help make it more attractive to producers. We test the ability of the Root Zone Water Quality Model (RZWQM) to simulate watershed-scale variability due to the LSNT, and we use the optimized model to simulate long-term field N dynamics under related conditions. Autoregressive techniques and the automatic parameter calibration program PEST were used to show that RZWQM simulates significantly lower nitrate concentration in discharge from LSNT treatments compared with areas receiving fall N fertilizer applications within the tile-drained Walnut Creek, Iowa, watershed (>5 mg NL(-1) difference for the third year of the treatment, 1999). This result is similar to field-measured data from a paired watershed experiment. A statistical model we developed using RZWQM simulations from 1970 to 2005 shows that early-season precipitation and early-season temperature account for 90% of the interannual variation in LSNT-based fertilizer N rates. Long-term simulations with similar average N application rates for corn (Zea mays L.) (151 kg N ha(-1)) show annual average N loss in tile flow of 20.4, 22.2, and 27.3 kg N ha(-1) for LSNT, single spring, and single fall N applications. These results suggest that (i) RZWQM is a promising tool to accurately estimate the water quality effects of LSNT; (ii) the majority of N loss difference between LSNT and fall applications is because more N remains in the root zone for crop uptake; and (iii) year-to-year LSNT-based N rate differences are mainly due to variation in early-season precipitation and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号