首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Chemical-looping combustion (CLC) is a combustion process with inherent separation of carbon dioxide (CO2), which is achieved by oxidizing the fuel with a solid oxygen carrier rather than with air. As fuel and combustion air are never mixed, no gas separation is necessary and, consequently, there is no direct cost or energy penalty for the separation of gases. The most common form of design of chemical-looping combustion systems uses circulating fluidized beds, which is an established and widely spread technology. Experiments were conducted in two different laboratory-scale CLC reactors with continuous fuel feeding and nominal fuel inputs of 300 Wth and 10 kWth, respectively. As an oxygen carrier material, ground steel converter slag from the Linz–Donawitz process was used. This material is the second largest flow in an integrated steel mill and it is available in huge quantities, for which there is currently limited demand. Steel converter slag consists mainly of oxides of calcium (Ca), magnesium (Mg), iron (Fe), silicon (Si), and manganese (Mn). In the 300 W unit, chemical-looping combustion experiments were conducted with model fuels syngas (50 vol% hydrogen (H2) in carbon monoxide (CO)) and methane (CH4) at varied reactor temperature, fuel input, and oxygen-carrier circulation. Further, the ability of the oxygen-carrier material to release oxygen to the gas phase was investigated. In the 10 kW unit, the fuels used for combustion tests were steam-exploded pellets and wood char. The purpose of these experiments was to study more realistic biomass fuels and to assess the lifetime of the slag when employed as oxygen carrier. In addition, chemical-looping gasification was investigated in the 10 kW unit using both steam-exploded pellets and regular wood pellets as fuels. In the 300 W unit, up to 99.9% of syngas conversion was achieved at 280 kg/MWth and 900 °C, while the highest conversion achieved with methane was 60% at 280 kg/MWth and 950 °C. The material’s ability to release oxygen to the gas phase, i.e., CLOU property, was developed during the initial hours with fuel operation and the activated material released 1–2 vol% of O2 into a flow of argon between 850 and 950 °C. The material’s initial low density decreased somewhat during CLC operation. In the 10 kW, CO2 yields of 75–82% were achieved with all three fuels tested in CLC conditions, while carbon leakage was very low in most cases, i.e., below 1%. With wood char as fuel, at a fuel input of 1.8 kWth, a CO2 yield of 92% could be achieved. The carbon fraction of C2-species was usually below 2.5% and no C3-species were detected. During chemical-looping gasification investigation a raw gas was produced that contained mostly H2. The oxygen carrier lifetime was estimated to be about 110–170 h. However, due to its high availability and potentially low cost, this type of slag could be suitable for large-scale operation. The study also includes a discussion on the potential advantages of this technology over other technologies available for Bio-Energy Carbon Capture and Storage, BECCS. Furthermore, the paper calls for the use of adequate policy instruments to foster the development of this kind of technologies, with great potential for cost reduction but presently without commercial application because of lack of incentives.

  相似文献   

2.
This paper presents the results of an environmental impact assessment of biodiesel production from soybean in Brazil. In order to achieve this objective, environmental impact indicators provided by Emergy Accounting (EA), Embodied Energy Analysis (EEA) and Material Flow Accounting (MFA) were used. The results showed that for one liter of biodiesel 8.8 kg of topsoil are lost in erosion, besides the cost of 0.2 kg of fertilizers, about 5.2 m2 of crop area, 7.33 kg of abiotic materials, 9.0 tons of water and 0.66 kg of air and about 0.86 kg of CO2 were released. About 0.27 kg of crude oil equivalent is required as inputs to produce one liter of biodiesel, which means an energy return of 2.48 J of biodiesel per Joule of fossil fuel invested. The transformity of biodiesel (3.90E + 05 seJ J?1) is higher than those calculated for fossil fuels as other biofuels, indicating a higher demand for direct and indirect environmental support. Similarly, the biodiesel emergy yield ratio (1.62) indicates that a very low net emergy is delivered to consumers, compared to alternatives. Obtained results show that when crop production and industrial conversion to fuel are supported by fossil fuels in the form of chemicals, goods, and process energy, the fraction of fuel that can actually be considered renewable is very low (around 31%).  相似文献   

3.
《Journal of Cleaner Production》2007,15(13-14):1271-1286
The analysis of industrial energy usage indicates that low temperature processes (20  200 °C) are used in nearly all industrial sectors. In principle there is the potential to use solar thermal energy in these lower temperature processes thus, reducing the environmental impact of burning fossil fuels. Using the model of an Austrian dairy plant, this research investigated the potential for, and the economic viability of, using solar energy heat processes in industry.Some industrial sectors such as food, chemistry, plastic processing, textile industry, building materials industry and business establishments can be identified as potential sectors for the application of solar energy heat processes. When assessing the (economic) feasibility of solar thermal energy, the investigation of these industries’ energy systems has to focus on an integrated analysis of cooling and heating demands and to take into account competing technologies. Amongst these are heat integration, cogeneration, new technologies and heat pumps. Pinch analysis was used to investigate industrial energy systems and heat integration possibilities and proved to be a viable tool. Working from the basis of energy balances, Sankey diagrams, pinch analysis and environmental cost accounting, a newly developed investigation tool was applied in the case study of an Austrian dairy plant. This enabled a fast optimization of the system. Two different options for the integration of solar thermal energy into the production line were calculated, option 1 with a solar field of 1000 m2 and option 2 with a solar field of 1500 m2. Natural gas savings of 85,000 for option 1 and 109,000 m3/a for option 2 can be achieved, resulting in a reduction of 170 tons of CO2 per year, or 218 tons for options 1 and 2 respectively. Based upon option 1, return on investment is realised after less than three years of implementation. This research thus, indicates promising technical and economical feasibility of using solar thermal energy for industrial processes and provides an important step towards sustainable zero emission production in industry.  相似文献   

4.
测土配方施肥对湖北省N2O减排的贡献   总被引:2,自引:0,他引:2  
为弄清测土配方施肥项目实施后对氧化亚氮(N_2O)排放产生的影响及其带来的经济效益.本研究通过比较传统施肥和测土配方推荐施肥的农田氮(N)投入量,依据《2006年IPCC国家温室气体清单指南》方法,分别估算了农田N_2O的直接排放和间接排放.结果表明,测土配方施肥项目从2004年开始实施至2013年的10年时间里,共减少氮肥的施用量74.39×104t(折纯N),作物产量增加1898.05×104t;10年里共减少N_2O排放总量为2.24×104t,其中由氮肥施用量减少带来的N_2O减排量为1.57×104t,作物产量提高带来的N_2O减排量为0.67×104t;湖北省不同区域的N_2O减排量与该地区项目实施面积密切相关,项目实施10年来襄阳市N_2O减排总量最大,为0.31×104t,其次是荆州市,减排量为0.26×104t,神龙架林区N_2O减排总量最小,仅为0.0034×104t;不同作物对N_2O减排的贡献以玉米减排总量最大,为0.54×104t,占减排总量的24.17%,其次为水稻,减排量为0.49×104t,芝麻减排总量最小,仅0.018×104t.按照湖北省碳交易市场最新交易价格25元·t-1C来计算,湖北省实施测土配方施肥项目10年来仅N_2O减排所带来效益可达1.74亿元.测土配方施肥项目不仅在湖北省粮食增产上有重要贡献,对减少N_2O排放也有重要贡献,并带来一定的经济效益.  相似文献   

5.
Numerous different bioreactor systems are applied for hydrogen production by dark fermentation. Thermophilic fermentations are gaining an increased interest due to the high hydrogen yields associated with them. In order to reach the best thermophilic fermentation system, 2 types of bioreactors, a trickling bed and a fluidized bed system, were constructed and operated under similar conditions. Both systems were designed to meet the requirements of thermophilic fermentations, such as reduction of hydrogen partial pressure, system immanence as its best as well as increasing cell densities. For comparing the 2 systems, the extreme thermophilic organism Caldicellulosiruptor owensensis OLT and a glucose-containing medium were employed. Parameters like hydraulic retention time, glucose concentration and stripping gas amount were varied. Each bioreactor system exhibited certain advantages; the trickling bed system enabled yields close to 3 mol-H2 (mol-glucose)?1 and productivities of 0.2 L L?1 h?1, but the application of stripping gas seemed to be obligatory. The fermentations in the fluidized bed system were characterized by slightly higher productivities (0.25 L L?1 h?1), but generally lower yields. However, operation of this system without stripping gas was possible.  相似文献   

6.
Crop derived biofuels such as (bio)ethanol are increasingly applied for automotive purposes. They have, however, a relatively low efficiency in converting solar energy into automotive power. The outcome of life cycle studies concerning ethanol as to fossil fuel inputs and greenhouse gas emissions associated with such inputs depend strongly on the assumptions made regarding e.g. allocation, inclusion of upstream processes and estimates of environmentally relevant in- and outputs. Peer reviewed studies suggest that CO2 emissions linked to life cycle fossil fuel input are typically about 2.1–3.0 kg CO2 kg−1 starch-derived ethanol. When biofuel production involves agricultural practices that are common in Europe there are net losses of carbon from soil and emissions of the greenhouse gas N2O. Dependent on choices regarding allocation, they may, for wheat (starch) be in the order of 0.6–2.5 kg CO2 equivalent kg−1 of ethanol. This makes ethanol derived from starch, or sugar crops, in Europe still less attractive for mitigating climate change. In case of wheat, changes in agricultural practice may reduce or reverse carbon loss from soils. When biofuel production from crops leads to expansion of cropland while reducing forested areas or grassland, added impetus will be given to climate change.  相似文献   

7.
This paper presents a study on the resource and environmental profile of leather for communicating to the consumers about the environmental burdens of leather products. The results indicate that significant environmental impacts were caused during the tanning and finishing of leather as well as the electricity production and transportation required in the life cycle. The use of fossil fuels in the production of energy has greater impact with increased emissions leading to about 15190 kg CO2 equivalent of global warming and about 73 kg SO2 equivalent of acidification while producing 100 m2 of leather for shoe uppers. Further resource use of 174 kg of coal, 6.5 kg of fuel oil, 17.4 m3 of water and 348 kg of chemicals of which about 204 kg are hazardous are consumed, and wastewater of about 17 m3, BOD of 55 kg, COD of about 146 kg, TDS of 732 kg and solid waste of about 1445 kg are generated during the life cycle for the production of 100 m2 of leather. The total solid waste generated is 1317 kg, out of which about 80% is biodegradable contributed by slaughtering, tanning and finishing stage, 14% is non-biodegradable contributed by tanning, finishing and electricity production stages and 6% is hazardous mainly from tanning and finishing stage of leather.  相似文献   

8.
Life Cycle Assessment (LCA) was applied to two smallholder milk production systems in Peru in order to evaluate the environmental burden of milk produced in each. An Andean highland milk production system where livestock feeding is restricted to permanent pastures supplemented with on farm grown ryegrass-clover was opposed to a coastal system with dairy cows fed a diet consisting of fodder maize and purchased concentrate. Milk production levels (kg/cow day) differed considerably with 2.57 for the highland and 19.54 for the coastal system. A Life Cycle Inventory was calculated for the functional unit of 1 kg energy corrected milk (ECM) and the environmental impacts global warming, acidification and eutrophication were estimated for 1 kg ECM, 1 ha and 1 animal, considering the multi-functionality of the system. The highland system was characterized by a high land use (23.1 m2a/kg ECM vs. 1.71 m2a/kg ECM at the coast). Irrigation water and energy were on the other hand used to a much higher amount at the coast (7291 l/kg ECM and 8791 MJ/kg ECM, respectively) than in the highlands (848 l/kg ECM and 0.20 MJ/kg ECM). Global warming potential, acidification and eutrophication were higher for 1 kg ECM produced in the highlands than at the coast by 10.6 kg CO2 equivalents, 6.58 g sulfur dioxide equivalents and 10.63 g phosphate equivalents, respectively. Nevertheless, 5220 kg CO2 equivalents more were emitted per animal at the coast than in the highlands. Also acidification and eutrophication were estimated to be on average 6 and 4 times higher at the coast compared to the highlands when expressed for the functional units of 1 ha and 1 animal.

Results

Whereas livestock is mainly responsible for impacts on the environment in the highlands, at the coast both livestock related emissions and forage cultivation play an important role. Furthermore CO2 releases from soybean cultivations heavily contribute to total emissions. Sensitivity analysis indicates that for dairy systems relying on crop by-products as feed the choice of the allocation method is a crucial point in a LCA study. Based on the results of this study, strategies in order to reduce the environmental burden of milk production should focus on an increase of production levels and a reduction of methane emissions from enteric fermentation in the highlands and a modification of the concentrate components replacing soya as the protein source at the coast.  相似文献   

9.
The purpose of this study was to develop a pilot scale tubular photo bioreactor (80 L) for photo fermentative hydrogen production by photosynthetic purple-non-sulfur bacterium, Rhodobacter capsulatus, operating in outdoor conditions, using acetate as the carbon source. The reactor was operated continuously in fed-batch mode for 30 days throughout December 2008 in Ankara. It was placed in a greenhouse in order to keep the temperature above freezing levels. It was found that R. capsulatus had a rapid growth with a specific growth rate of 0.025 h?1 in the exponential phase. The growth was defined with modified logistic model for long term duration. The hydrogen production and feeding started in the late exponential phase. Evolved gas contained 99% hydrogen and 1% carbon dioxide by volume. The average molar productivity calculated during daylight hour was 0.31 mol H2/(m3 h) with regard to the total reactor volume and 0.112 mol H2/(m2·day) with regard to the total illuminated surface area. It was proven that even at low light intensities and low temperatures, the acetic acid which was fed to the system can be utilized for biosynthesis, growth and hydrogen production. The overall hydrogen yield was 0.6 mole H2 per mole of acetic acid fed. This study showed that photofermentation in a pilot scale tubular photo bioreactor can produce hydrogen, even in winter conditions.  相似文献   

10.
Mitigation of greenhouse gases by adoption of improved biomass cookstoves   总被引:1,自引:0,他引:1  
Greenhouse gases especially CO2 can be reduced with the help of improved biomass cookstoves. This paper deals with the design and development of biomass stoves (single pot and double pot) with better efficiency for meeting household cooking energy requirement. Thermal performance, flue gas emission of carbon monoxide (CO) and carbon dioxide (CO2) have been investigated. It was seen from the result that the flue gas emission is within permissible limit as recommended by World Health Organization. The design of improved biomass stove sent to Palampur (32o10’N,76o30’E) center situated in Himalaya in hilly terrain of India, where the acceptability of double pot stoves (85%) is quite high compared to single pot stoves (30%). Thermal efficiencies of both single and double pot stove were recorded about 21% and 25% respectively. An improved biomass cookstove can save about 161 kg of CO2 annually. Improved cookstoves was found eco-friendly in nature and suitable for the cooking requirement of hilly areas.  相似文献   

11.
Biogas treatment of animal manures is an upcoming technology because it is a way of producing renewable energy (biogas). However, little is known about effects of this management strategy on greenhouse gas (GHG) emissions during fermentation, storage, and field application of the substrates compared to untreated slurries. In this study, we compared cattle slurry and cattle slurry with potato starch as additive during the process of fermentation, during storage and after field application. The addition of potato starch strongly enhanced CH4 production from 4230 l CH4 m−3 to 8625 l CH4 m−3 in the fermenter at a hydraulic retention time (HRT) of 29 days. Extending the HRT to 56 days had only a small effect on the CH4 production. Methane emissions from stored slurry depended on storage temperature and were highest from unfermented slurry followed by the slurry/starch mixture. Gas emissions from untreated and fermented slurry during storage were further analyzed in a pilot-scale experiment with different levels of covering such as straw cover, a wooden lid and no cover. Emissions of greenhouse gases (CH4, N2O, NH3) were in the range of 14.3–17.1 kg CO2 eq. m−3 during winter (100 day storage period) and 40.5–90.5 kg CO2 eq. m−3 during summer (140 day storage period). A straw cover reduced NH3 losses, but not overall GHG emissions, whereas a solid cover reduced CH4 and NH3 emissions. After field application, there were no significant differences between slurry types in GHG emissions (4.15–8.12 kg CO2 eq. m−3 a−1). GHG emissions from slurry stores were more important than emissions after field application. Co-digestion of slurry with additives such as starch has a large potential to substitute fossil energy by biogas. On a biogas plant, slurry stores should be covered gas-tight in order to eliminate GHG emissions and collect CH4 for electricity production.  相似文献   

12.
Syngas is a clean energy carrier and a major industrial feedstock. In this paper, syngas was produced via biomass chemical looping gasification(CLG) process. Hematite, the most common Fe-based oxygen carrier(OC), was modified with different metal oxides(CeO2, CaO and MgO) by the impregnation method. The hematite modified by CeO2, CaO and MgO was namely as CeO2-hematite(CeO2-H), CaO-hematite(CaO-H) and MgO-hematite(MgO-H), respectively. The introduction...  相似文献   

13.
Slurries are a significant source of CH4, NH3 and N2O emissions to the atmosphere. The research project aimed at quantifying CH4, NH3 and N2O emissions from liquid manure stores and after manure application under field conditions. The influence of the manure treatment options “no treatment”, “slurry separation”, “anaerobic digestion”, “slurry aeration” and “straw cover” on the emission level was investigated. Approximately 10 m3 of differently treated slurry were stored in pilot scale slurry tanks. Emissions were followed for c. 80 days. After the storage period, slurries were applied to permanent grassland. Greenhouse gas emissions from slurry were mainly caused by methane emissions during storage and by nitrous oxide emissions after field application of manures. Mitigation of GHG emissions can be achieved by a reduction in slurry dry matter and easily degradable organic matter content. Ammonia emissions mainly occurred after field application. Untreated slurry emitted 226.8 g NH3 m−3 and 92.4 kg CO2 eq. m−3 (storage and field application). Slurry separation (liquid fraction and composting of the solid fraction) resulted in NH3 losses of 402.9 g m−3 and GHG losses of 58.5 kg CO2 eq. m−3. Anaerobic digestion was a very effective means to reduce GHG emissions. 37.9 kg CO2 eq. m−3 were lost. NH3 emissions were similar to those from untreated slurry. Covering the slurry store with a layer of chopped straw instead of a wooden cover increased NH3 emissions to 320.4 g m−3 and GHG emissions to 119.7 kg CO2 eq. m−3. Slurry aeration nearly doubled NH3 emissions compared to untreated slurry. GHG emissions were reduced to 53.3 kg CO2 eq. m−3.  相似文献   

14.
Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C–350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C–700°Cwith an air equivalence ratio (ER) of 0.2–0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm3)−1, which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MS Wand the fly ash percentage in the total ash.  相似文献   

15.
Magnesium (Mg) has a great potential to reduce vehicle weight, fuel consumption, and greenhouse gas emissions. The Chinese Mg industry has developed rapidly since the 1990s. The output of Mg reached 700,000 tons in 2006, accounting for more than 70% of global Mg production. Most of Mg is produced in China through the Pidgeon process that has an intensive energy usage and generates a large amount of greenhouse gas (GHG) emissions, which may offset the potential advantage of using Mg parts in automobiles. It is critical to quantify the energy usage and GHG emissions through entire life cycle when the Mg are applied to automobiles. It is also essential to evaluate cost implications of the Mg parts application in automobiles and ensure it to be cost competitive. The objectives of this study are (1) Build a life cycle inventory (LCI) of Mg produced by Pidgeon process; (2) Establish an LCA model that can evaluate GHG emissions and energy usage for the Mg automotive application; (3) Estimate the cost implications of the Mg parts application in automobiles.An Mg LCI was built based on interviews and surveys and the GREET model was adapt for this study. The results indicated that, for each kilogram of Mg produced by Pidgeon process, GHG emissions and energy usage would be 27 kg CO2eq and 280 MJ, which are five times higher than steel production. Replacing steel with 82 kg Mg on a base automobile would lower curb weight by 5.7%, but only reduce life cycle GHG emissions and energy usage by 0.8% and 1.3%. Scenario analyses indicated that potential reduction of life cycle GHG emissions and energy usage could reach to 15%, if secondary weight saving and a smaller engine were included. Cost analyses also show 18% reduction when the additional weight saving and a smaller displacement engine were included, under a 100,000 km driving distance and gasoline price at $1.0/l.  相似文献   

16.
The greenhouse gas emissions from agricultural systems contribute significantly to the national budgets for most countries in Europe. Measurement techniques that can identify and quantify emissions are essential in order to improve the selection process of emission reduction options and to enable quantification of the effect of such options. Fast box emission measurements and mobile plume measurements were used to evaluate greenhouse gas emissions from farm sites. The box measurement technique was used to evaluate emissions from farmyard manure and several other potential source areas within the farm. Significant (up to 250 g CH4 m−2 day−1and 0.4 g N2O m−2 day−1) emissions from ditches close to stables on the farm site were found.Plume emission measurements from individual manure storages were performed at three sites. For a manure storage with 1200 m3 dairy slurry in Wageningen emission factors of 11 ± 5 g CH4 m−3 manure day−1 and 14 ± 8 mg N2O m−3 manure day−1 were obtained in February 2002.Mobile plume measurements were carried out during 4 days at distances between 30 and 300 m downwind of 20 different farms. Total farm emissions levels ranged from 14 to 95 kg CH4 day−1 for these sites. Expressed as emission per animal the levels were 0.7 ± 0.4 kg CH4 animal−1 day−1 for conventional farms. For three farms that used straw bedding for the animals1.4 ± 0.2 kg CH4 animal−1 day−1 was obtained. These factors include both respired methane and emission from manure in the stable and the outside storages.For a subset of these farms the CH4 emission was compared with monthly averaged model emission calculations using FarmGHG. This model calculates imports, exports and flows of all products through the internal chains on the farm using daily time steps. The fit of modelled versus measured data has a slope of 0.97 but r2 = 0.27. Measurements and model emission estimates agree well on average, for large farms within 30%. For small farms the differences can be up to a factor of 3. CH4 emissions during winter seem to be underestimated.  相似文献   

17.
We assessed the economic suitability of 4 greenhouse gas (GHG) mitigation options and one GHG offset option for an improvement of the GHG balance of a representative Swiss suckler cow farm housing 35 Livestock units and cultivating 25 ha grassland. GHG emissions per kilogram meat in the economic optimum differ between the production systems and range from 18 to 21.9 kg CO2-eq./kg meat. Only GHG offset by agroforestry systems showed the potential to significantly reduce these emissions. Depending on the production system agroforestry systems could reduce net GHG emissions by 66% to 7.3 kg CO2-eq./kg meat in the most intensive system and by 100% in the most extensive system. In this calculation a carbon sequestration rate of 8 t CO2/ha/year was assumed. The potential of a combination of the addition of lipids to the diet, a cover of the slurry tank and the application of nitrification inhibitors only had the potential to reduce GHG emissions by 12% thereby marginal abatement costs are increasing much faster than for agroforestry systems. A reduction of the GHG emissions to 7.5 kg CO2-eq./kg meat—possible with agroforestry only—raised costs between 0.03 CHF/kg meat and 0.38 CHF/kg meat depending on the production system and the state of the system before the reduction. If GHG emissions were reduced maximally average costs ranged between 0.37 CHF/kg meat, if agroforestry had the potential to reduce net GHG emissions to 0 kg CO2-eq., to 1.17 CHF/kg meat if also other options had to be applied.  相似文献   

18.
Recent market slump in rice, less rainfall during monsoon, high temperature and scarcity of water during dry season leads to lower grain yield and less profit from rice cultivation in India. Farmers’ grow upland crops like chickpea (Cicer arietinum), greengram (Vigna radiate), mustard (Brassica nigra), corn (Zea maize), pigeonpea (Cajanus cajan), potato (Solanum tuberosum), sunflower (Helianthus annuus) etc. along with rice (Oryza sativa) during the dry season. However, knowledge of greenhouse gas (GHG) emission from these rice based cropping systems is very limited. In the present study four rice based cropping systems was studied along with rice-rice rotation system as control in respect of GHG emission, yield potential and economic feasibility. Conventional plantation and fertilizer application methodology was followed for each crop. Methane (CH4) and nitrous oxide (N2O) flux from field plots were studied with conventional closed chamber method using gas chromatograph. CH4 flux was recorded highest from rice-rice rotation plots (304.25 kg ha−1). N2O flux was recorded 1.02 kg ha−1 from rice-rice rotation system during wet season. However, during wet season, higher N2O flux (1.93 kg ha−1) was recorded from rice-potato-sesame rotation plots. Annual N2O flux was also recorded significantly low (3.42 kg ha−1) from rice-rice rotation plots and high (6.19 kg ha−1) from rice-chickpea-greengram rotation plots. Significantly lower annual grain yield was recorded from rice-rice rotation plots (9.25 Mg ha−1) whereas it was 18.84 Mg rice eq ha−1 from rice-potato-sesame rotation system. The global warming potential (GWP) of rice-rice rotation system was recorded significantly high (8.62 Mg CO2 ha−1) compare to plots with different rice based cropping systems. Computing all C-emission from cradle-to-grave, highest total C-cost was recorded from the rice-rice rotation system ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit ($62.00 ha−1). We have made an attempt to calculate the C-credit of different rice based cropping systems by considering the difference of C-cost with control. The study suggests that the rice-potato-sesame is most sustainable among different cropping system studied in terms of economic profit (1248.21 ha−1) and C-credit ($38.60 ha−1). The result of the study may be limited to the study region; however, the study has potential use in respect to the development of agriculture practice for adaptation to climate change.  相似文献   

19.
罗东升 《环境科学》1989,10(3):42-45
氧硫化碳(COS)是合成硫代氨基甲酸酯类农药及医药的重要中间体。关于它的合成,国内外已有不少报道。一般都是在催化剂的催化下,由一氧化碳和硫进行气相反  相似文献   

20.
An extended Life Cycle Assessment (LCA) is performed for evaluating the impacts of a woody biomass supply chain for heating plants in the alpine region. Three main aspects of sustainability are assessed: greenhouse gas emissions, represented by global warming potential (GWP) impact category, costs and direct employment potential. We investigate a whole tree system (innovative logging system) where the harvest of logging residues is integrated into the harvest of conventional wood products. The case study is performed in Valle di Fiemme in Trentino region (North Italy) and includes theoretical and practical elements. The system boundary is the alpine forest fuel system, from logging operations at the forest stand to combustion of woody biofuels at the heating plant. The functional unit is 1 m3 solid over bark of woody biomass, delivered to the district heating plant in Cavalese (Trento). The relative sustainability of traditional and innovative systems is compared and energy use is estimated. Results show that the overall GWP and costs are about 13 kg CO2equivalent and 42 euro per functional unit respectively for the innovative system. Along the product supply chain, chipping contributes the greatest share of GWP and energy use, while extraction by yarder has the highest financial costs. The GWP is reduced by 2.3 ton CO2equivalent when bioenergy substitutes fuel oil and 1.7 ton CO2equivalent when it substitutes natural gas. The sensitivity analysis illustrates that variations in fuel consumption and hourly rates of costs have a great influence on chipping operation and extraction by cable yarder concerning GWP and financial analysis, respectively. This is confirmed by sensitivity analysis. Better technologies, the use of biofuels along the product supply chain and more efficient systems might reduce these impacts. Replacing the traditional system with the innovative one reduces emissions and costs. A low energy input ratio is required for harvesting logging residues. The direct employment potential is a conflicting aspect and needs further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号