首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We examine carbon (C) reference and mitigation scenarios for the Mexicanforest sector between the year 2000 and 2030. Estimates are presentedseparately for the period 2008–2012.Future C emissions and capture are estimated using a simulation modelthat: a) allocates the country land use/land cover classes among differentfuture uses and categories using demand-based scenarios for forestryproducts; b) estimates the total C densities associated to each land usecategory, and c) determines the net carbon implications of the process ofland use/cover change according to the different scenarios.The options analyzed include both afforestation/reforestation, such ascommercial, bionenergy and restoration plantations, and agroforestrysystems, and forest conservation, through the sustainable management ofnative forests and forest protection.The total mitigation potential, estimated as the difference between the totallong-term carbon stock in the reference and the mitigation scenario reaches300 × 106 Mg C in the year 2012 and increases to 1,382 × 106 Mg C in 2030. The average net sequestration in the 30 year period is 46 × 106 Mg C yr-1, or 12.5 × 106 Mg C yr-1 within the period 2008 to 2012. The costs of selected mitigation options range from 0.7–3.5 Mg C-1 to 35 Mg C-1. Some options are cost effective.  相似文献   

2.
The forest sector in the Philippines has the potential to be amajor sink for carbon (C). The present study was conducted to evaluatepotential forestry mitigation options in the Philippines using the Comprehensive Mitigation Assessment Process (COMAP)model. The baseline scenario (BAU) assumes that current trends continue upto the year 2030 (`business-as-usual'). Two mitigation scenarios wereevaluated: high scenario (HS) and low scenario (LS). The former ispatterned largely from the government's forest master plan while thelatter assumes a 50% lower success rate of the master plan.The results of the analyses show that by 2030, the total C stock of thePhilippine forest sector in the baseline scenario decreases to 814× 106 Mg C,down by 37% compared to the 1990 level. The C stocks of the HS andLS mitigation scenarios were 22% and 18% higher than the BAU,respectively. Of the mitigation options assessed, long rotation plantationsand forest protection activities produce the greatest C gain (199 and 104× 106 Mg, respectively under HS). The not present value (NPV)of benefits is highest in the bioenergyoption with $24.48 per Mg C (excluding opportunity costs) at a realdiscount rate of 12%. However, the investment and life cycle costs arealso highest using bioenergy.The study also estimated potential investments needed under the mitigationscenarios. The investment requirement for the LS amounts to $263× 106 while for the HS it is $748 × 106. Finally, policy issues anddecisions that may be useful for the Philippines to evaluate LULUCFmitigation options under the UNFCCC Kyoto Protocol, are identified anddiscussed.  相似文献   

3.
Land use, land-use change and forestry (LULUCF) projects may becomeeligible under Article 12 of the United Nations Framework Convention onClimate Change (UNFCCC) Kyoto Protocol's Clean DevelopmentMechanism (CDM). Some of the issues, which need to be addressed,include identifying the types of greenhouse gas (GHG) mitigation activitiesin LULUCF, which could be undertaken as CDM projects. Other issuesinvolve evaluating the mitigation potential and cost effectiveness of theactivities, as well as their likely socio-economic impacts and their influenceon the national carbon (C) stock. Three broad categories of mitigationactivities in LULUCF analyzed in this study include managing Cstorage, C conservation and carbon substitution. The C intensityof the activities was estimated to range from 37 to 218 Mg C per ha. The highest is in reforested land with slow growing species and the lowestin short-rotation plantations. At a real discount rate of 10%, investmentcosts required to implement the mitigation activities ranged from US$0.07 to 0.88 per Mg C, with life cycle costs ranging from US$ 0.07to 3.87 per Mg C, and benefits ranging from US$ –0.81 to 6.57 perMg C. Mitigation options with negative benefits are forest protection,reforestation, reduced impact logging and enhanced natural regeneration,while those with positive benefits are short rotation timber plantation, andbio-energy. Reforestation gave negative benefit since no revenue fromwood as trees are left in the forest for conservation, while Reduced ImpactLogging (RIL) and Enhanced Natural Regeneration (ENR)gave negative benefits because additional cost required to implement theoptions could not be compensated by the increase in round-hardwoodyield. Other factor is that the local price of round-hardwood is very low,i.e. US$ 160 per m3, while FOB price is between 250–400 US$ per m3. Total area available for implementing mitigationoptions (planting trees) in 1997 was 31 million hectares (× 106ha) (about 40% are critical lands, 35% grasslands and 25%unproductive lands).Total area being considered for implementing the options under baseline,government-plans and mitigation scenarios in the period 2000–2030 is12.6, 16.3 and 23.6 × 106 ha respectively. Furthermore, total area of production forest being considered for implementing reduced impactlogging and enrichment planting under the tree scenarios is 9, 26 and 16 × 106 ha respectively, and that for forest protection is 2.1, 3.7, 3.1× 106 ha respectively. The cumulative investment for implementingall mitigation activities in the three scenarios was estimated at 595, 892and 1026 million US$ respectively. National C stock under thebaseline scenario will continuously decline through 2030, while undergovernment-plans and mitigation scenarios the carbon stock increases. In2030, national C stock of the government and mitigation scenarios isalmost the same, 13% higher than that of baseline. However, the increasein national carbon stock in both scenarios could not offset carbon emissionsdue to deforestation.  相似文献   

4.
In this paper, forest protection, short- and long-rotation plantations, forestregeneration, agroforestry and other activities for carbon (C) sequestration wereevaluated. China may be divided into five sub-regions, of which three fallin the main forested areas of China, i.e., the northeast, the southeast andthe southwest regions. The forestry mitigation potential in these threeregions is the subject of this paper. The Comprehensive Mitigation AssessmentProcess (COMAP) model is used to calculatethe potential for carbon mitigation and the cost-effectiveness of eachmitigation option, assuming that 60 percent of the goals of long-termforestry plans of the Chinese government could be realized. The resultsshow that the total sequestered C by the mitigation scenario between2000 and 2030 for the three regions of China will be 2093 × 106 Mg C, ofwhich 281 × 106 Mg C will occur between 2008 and 2012. The total netbiomass sequestration (difference of mitigation and baseline scenarios) from2000 to 2030 and from 2008 to 2012 is 496 × 106 Mg C and 59 × 106 Mg Crespectively. The C sequestration potential could be higher if othertwo regions are included since the forest area of the two regions amount to26.5% of total forested area, in particular, the land area suitable forforestation in the northwest accounts for 45% of the total. The activitywith least investment cost per unit of C is forest regeneration, followedby long-rotation plantation and forest conservation. The mostinvestment-intensive activity is bioenergy. The total investment for all themitigation activities is US $12.7 billion. The above figures between2008–2012 provide an upper bound on the potential for early startprojects that might be eligible for the Clean Development Mechanism(CDM). The authors would like to note that the mitigation potential andcost-effectiveness of agroforestry and bioenergy projects need to be furtherstudied.  相似文献   

5.
The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequester carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservationoptions in the tropical and miombo ecosystems. Three sequestrationoptions were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 × 106 hectares. The short rotation community forestry option has a potential to sequester an equilibrium amount of 197.4 × 106 Mg C by 2024 at a net benefit of 79.5 × 106, while yielding a NPV of 0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 × 106 Mg C at a negative NPV of 0.60 Mg-1 C and 0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 × 106 Mg C yr-1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of 1.27 Mg-1 C, rising to 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.  相似文献   

6.

China is among the largest emitters of carbon dioxide (CO2), worldwide Thus, its emissions mitigation is of global concern. The power generation sector is responsible for nearly half of China’s total CO2 emissions and plays a key role in emissions mitigation. This study is an integrated evaluation of abatement technologies, including both low-carbon power generation technologies and retrofitting options for coal power plants. We draw marginal abatement cost curves for these technologies using the conservation supply curve method. Using scenario analysis for the years 2015 to 2030, we discuss the potential performance of abatement technologies. Marginal costs for the analyzed abatement technologies range from RMB ? 357.41/ton CO2 to RMB 927.95/ton CO2. Furthermore, their cumulative mitigation potential relative to the baseline scenario could reach 35 billion tons of CO2 in 2015–2030, with low-carbon power generation technologies and coal power abatement technologies contributing 55% and 45% of the total mitigation, respectively. Our case study of China demonstrates the power generation sector’s great potential to mitigate global emissions, and we suggest nuclear power, hydropower, and the comprehensive retrofitting of coal power as key technology options for the low-carbon transition of the energy system and long-term emissions mitigation strategies.

  相似文献   

7.
In this paper we demonstrate that the institutionalarrangement (or: design) of Joint Implementation (JI) and the CleanDevelopment Mechanism (CDM) has a decisive impact on theircost-effectiveness. We illustrate our arguments by statistically analyzing thecosts from 94 Activities Implemented Jointly (AIJ) pilot phase projects aswell as by adjusting these data on the basis of simple mathematicalformulas. These calculations explicitly take into account the institutionaldifferences between JI (sinks, no banking) and the CDM (banking, no sinks)under the Kyoto Protocol and also show the possible effects on credit costsof alternative design options. However, our numerical illustrations shouldbe viewed with caution, because AIJ is only to a limited extentrepresentative of potential future JI and CDM projects and because creditcosts are not credit prices. Some of the main figures found in this study are:an average cost figure per unit of emission reduction for AIJ projects of 46dollar per ton of carbon dioxide equivalent ($/Mg CO2-eq), anaverage potential JI credit cost figure which is lowered to 37$/Mg CO2-eq by introducing banking and an average of 6$/Mg CO2-eq per credit for potential low-cost CDM projects whichincludes sinks. However, at CoP6 in November 2000 in The Hague (TheNetherlands), the Parties to the Framework Convention on Climate Change(FCCC) did not (yet) reach consensus on the institutional details of theproject-based mechanisms, such as the possible arrangement of early JIaction or the inclusion of sinks under the CDM.  相似文献   

8.
The “South–North Dialogue” Proposal, developed by researchers from developing and industrialised countries, outlined equitable approaches to mitigation. These approaches were based on the criteria of responsibility, capability and potential to mitigate, and include deep cuts in industrialised (Annex I) countries and differentiated mitigation commitments for developing countries. This paper quantitatively analyses the implications of the proposal for countries’ emissions and costs. The analysis focuses on a “political willingness” scenario and four stabilisation scenarios. The analysis shows that stringent stabilisation targets imply that many developing countries would have to take on quantitative mitigation obligations by 2030, even when the Annex I countries take on ambitious mitigation commitments far beyond the Kyoto obligations. The “political willingness scenario” will probably not suffice to limit a warming of the Earth's atmosphere to below 2 °C.  相似文献   

9.
A sustainable forestry scenario aimed at meeting the projected biomassdemands, halting deforestation and regenerating degraded forests wasdeveloped and analyzed for additionality of mitigation and cost-effectivenessfor India. Similarly, mitigation potential of a commercial forestry scenarioaimed at meeting the biomass demands from forestry activities on privateland was assessed. India has a significant scale baseline scenario afforestationand effective forest conservation activities. India is afforesting at an averagegross rate of 1.55 × 106 ha yr-1 over the past 10 years, while the gross deforestation rate was 0.272 × 106 ha yr-1 during the same period. The sustainable forestry scenario could lead to an additional carbon (C) stock of 237 × 106 Mg C during 2000 to 2012, while the commercial forestry scenario apart from meeting all the incremental biomass demands (estimated for 2000 to 2015) could potentially lead to an additional carbon stock of 78 × 106Mg C during 2000 to 2012. Short- and Long-rotation forestry activities arecommercially viable. With appropriate policies and financial incentives allthe industrial wood, sawnwood and commercial fuelwood requirementcould be met through commercial forestry, so that government funds couldbe dedicated for conserving state owned forests and meeting subsistencebiomass demands. The commercial forestry activities could receive financialsupport under greenhouse gas (GHG) abatement programmes. The government, however, needs to develop institutions and guidelines to process, evaluate, approve and monitor forestry sector mitigation projects.  相似文献   

10.
Tripa is the last remaining peat-swamp forest that harbours a potentially viable Sumatran orangutan (Pongo abelii) sub-population in a formally but not effectively protected area. It appears to be a simple showcase where current efforts to financially support reducing emissions from deforestation and forest degradation (REDD+) converge with biodiversity and social co-benefits. In practice, however, situation is more complex. REDD+ efforts interact with global palm oil trade and regulatory approaches (the moratorium) to achieve national goals for emissions reduction under umbrella of nationally appropriate mitigation actions (NAMA). To contextualize this debate, we assessed (i) land-use history and formal basis of palm-oil companies’ rights; (ii) carbon (C) stocks, historical emission levels and potential emissions that can be avoided; (iii) economic benefits of land-use options and opportunity costs of avoiding emissions; (iv) biodiversity and environmental services; and (v) alternative options for “high C stock development” and employment generation. Natural forest cover declined (54 % in 1995, 18 % in 2009) while oil palm increased 4–39 %. Aboveground C stocks decreased from 148 Mg ha?1 in 1990 to 61 Mg ha?1 in 2009, leading to average annual emissions of 14.5 Mg (carbon dioxide) CO2e ha?1 year?1. While 41 % of these emissions yield less than American Dollar (USD) 5 of current economic benefits per Mg CO2e emitted and might be compensated by REDD+, nearly all new emissions derive from a breach of existing laws, regulations and voluntary palm-oil standards. Substantial investment in alternative employment is needed, rather than carbon payments per se, to support livelihoods in a low carbon emissions economy.  相似文献   

11.
Agriculture, Forestry and Other Land Use (AFOLU) sectors account for 53 % of the domestic greenhouse gas emissions (GHG) in Vietnam in 2000. However, due to political focus on adaptation, Vietnamese government has not formulated particular policy on mitigation in the sectors. This study aims to identify and assess mitigation potential in AFOLU sectors in Vietnam up to 2030 using AFOLU Bottom-up model. Therefore, the results can help government towards building mitigation strategies in the country. The methodology involves: (1) development of future assumptions of crops harvested areas, livestock population and area of land use and land use change and (2) identification of mitigation countermeasures with high potential and assessment of their cost-effectiveness. In 2030, 11 MtCO2eq/year of emission can be reduced by no-regret countermeasures which take zero or negative cost. In the case of full application of countermeasures, 48 MtCO2eq/year can be reduced compared to the baseline emission level. Mitigation countermeasures, which have great contribution for GHG reduction in Vietnam, are midseason drainage in rice paddy (7 MtCO2eq/year), off-season incorporation of rice straw (3 MtCO2eq/year) and conservation of existing protection forests (17 MtCO2eq/year). Based on our findings, a package of mitigation countermeasures at 10 USD/tCO2eq is expected to have the most economic efficiency and high mitigation for GHG mitigation in AFOLU sectors in Vietnam.  相似文献   

12.
Old growth mangroves in existing protected areas store more carbon than restored forests or plantations. Carbon storage in such forests has economic value independent of additionality, offering opportunities for policy makers to ensure their maintenance, and inclusion in climate change mitigation strategies. Mangrove forests of the Everglades National Park (ENP), South Florida, though protected, face external stressors such as hydrological alterations because of flooding control structures and agriculture impacts and saltwater intrusion as a result of increasing sea level rise. Moreover, decreased funding of Everglades’ restoration activities following the recent economic crisis (beginning 2008) threatens the restoration of the Greater Everglades including mangrove dominated coastal regions. We evaluate several economic and ecological challenges confronting the economic valuation of total (vegetation plus soil) organic carbon (TOC) storage in the ENP mangroves. Estimated TOC storage for this forested wetland ranges from 70 to 537 Mg C/ha and is higher than values reported for tropical, boreal, and temperate forests. We calculate the average abatement cost of C specific for ENP mangroves to value the TOC from $2–$3.4 billion; estimated unit area values are $13,859/ha–$23,728/ha. The valuation of the stored/legacy carbon is based on the: 1) ecogeomorphic attributes, 2) regional socio-economic milieu, and 3) status of the ENP mangroves as a protected area. The assessment of C storage estimates and its economic value can change public perception about how this regulating ecosystem service of ENP mangrove wetlands (144,447 ha) supports human well-being and numerous economic activities. This perception, in turn, can contribute to future policy changes such that the ENP mangroves, the largest mangrove area in the continental USA, can be included as a potential alternative in climate change mitigation strategies.  相似文献   

13.
Application of sulfate-containing amendments is oftensuggested as a mitigation option to reduce methane (CH4) emissionsfrom rice (Oryza) fields. This paper discusses the mechanism andpotential of this mitigation option, reviews the relevant experimental data,and presents first, indicative costs of application. CH4 emission datafor rice fields with sulfate-containing amendments are compiled toreinterpret the resulting reduction in CH4 emission and find a generalrelationship between emission reduction and amount of sulfate applied. Thereduction in CH4 emission depends on the amount of sulfate applied.However, absolute emission reduction is location specific and cannot bederived from the amount of sulfate (SO2- 4) applied only. We established alogarithmic relationship, across locations, between SO2- 4 application andfractional emission reduction relative to the emission of the non-amendedcontrol field. Recycling of SO2- 4 in the rhizosphere was essential to explainthe observed reductions in CH4 emission for a number of theexperiments. The cost of applying SO2- _4-containing fertilizers varies acrosscountries and depends on local fertilizer prices. Since a fractional reductionis obtained, the cost-efficiency in terms of CH4 mitigation per unitof SO2- 4 applied will be highest in high-emitting rice production systems.Provided the proper target areas are selected, the cost of SO2- 4-containingfertilizer as a mitigation option to reduce CH4 emissions in rice fieldsis estimated at 5–10 US dollar per Mg CO2-equivalent.  相似文献   

14.
The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa)–wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30–40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57–1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030.  相似文献   

15.
There is a high level of interest in reducing emissions from deforestation and forest degradation plus (REDD+) carbon (C) financing as a way to accelerate forest conservation and development. However, there is very limited information on the potential costs and benefits of REDD+ in developing countries like the Philippines. In this paper, we estimated the range of likely financial benefits of REDD+ implementation in the country under various forest degradation and mitigation scenarios. Our findings show that reducing the rate of forest degradation by a modest 5 to 15 % annually while increasing the doubling the rate of reforestation to 1.5 % annually could reduce C emissions by up to about 60 million t C by 2030. These are equivalent to US$ 97 to 417 million of mean C credits annually at US$ 5 per ton C. These figures are much higher than the total budget of the government and official development assistance for forestry activities in the country which amounted to US$ 46 million in 2005 and US$ 12 million in 2006, respectively. We conclude that REDD+ C credits could be a significant source of financing for forestry projects in developing countries like the Philippines.  相似文献   

16.
Tropical forests in countries like thePhilippines are important sources and sinks of carbon(C). The paper analyzes the contribution of Philippineforests in climate change mitigation. Since the 1500s,deforestation of 20.9 M ha (106 ha) of Philippineforests contributed 3.7 Pg (1015 g) of C to theatmosphere of which 2.6 Pg were released this century. At present, forest land uses store 1091 Tg(1012 g) of C and sequester 30.5 Tg C/yr whilereleasing 11.4 Tg C/yr through deforestation andharvesting. In the year 2015, it is expected that thetotal C storage will decline by 8% (1005 Tg) andtotal rate of C sequestration will increase by 17%(35.5 Tg/yr). This trend is due to the decline innatural forest area accompanied by an increase intree plantation area. We have shown that uncertaintyin national C estimates still exists because they arereadily affected by the source of biomass and Cdensity data. Philippine forests can act as C sink by:conserving existing C sinks, expanding C stocks, andsubstituting wood products for fossil fuels. Here weanalyze the possible implications of the provisions ofthe Kyoto Protocol to Philippine forests. Finally, wepresent current research and development efforts ontropical forests and climate change in the Philippinesto improve assessments of their role in the nations Cbudgets.  相似文献   

17.
Carbon forestry mitigation potential estimates at the global-level are limited by the absence or simplicity of national-level estimates, and similarly national-level estimates are limited by absence of regional-level estimates. The present study aims to estimate the mitigation potential for a large diverse country such as India, based on the GTAP global land classification system of agro-ecological zones (AEZs), as well the Indian AEZ system. The study also estimates the implications of carbon price incentive (US$50 and $100) on mitigation potential in the short-, medium- and long-term, since afforestation and reforestation (A & R) is constrained by lack of investment and financial incentives. The mitigation potential for short and long rotation plantations and natural regeneration was estimated using the GCOMAP global forest model for two land area scenarios. One scenario included only wastelands (29 Mha), and the second enhanced area scenario, included wastelands plus long fallow and marginal croplands (54 Mha). Under the $100 carbon price case, significant additional area (3.6 Mha under the wasteland scenario and 6.4 Mha under the enhanced area scenario) and carbon mitigation is gained in the short-term (2025) compared to the baseline when using the GTAP land classification system. The area brought under A & R increases by 85–100% for the $100 carbon price compared to $50 carbon price in the short-term, indicating the effectiveness of higher carbon price incentives, especially in the short-term. A comparison of estimates of mitigation potential using GTAP and Indian AEZ land classification systems showed that in the short-term, 35% additional C-stock gain is achieved in the $100 carbon price case in the enhanced area scenario of the Indian AEZ system. This difference highlights the role of the land classification system adopted in estimation of aggregate mitigation potential estimates, particularly in the short-term. Uncertainty involved in the estimates of national-level mitigation potential needs to be reduced, by generating reliable estimates of carbon stock gain and losses, and cost and benefit data, for land use sector mitigation options at a scale disaggregated enough to be relevant for national mitigation planning.  相似文献   

18.
This paper provides a survey of top-downmodelling analyses of carbon (C) abatementmitigation costs, distributional effectsand ancillary benefits in the Nordiccountries, the U.K. and Ireland. Specialemphasis is placed on the effects ofrevenue recycling and tax exemptions.According to the analyses, modestemissions reductions can be met withoutsubstantial costs for the countriesstudied, and a strong double dividend isfound in some analyses. The gross domesticproduct (GDP) or welfare effects are mostlyin the range of –0.4 and 1.2 percent whenC emissions are reduced by 20–30 per cent.Lowest costs are obtained without taxexemptions and with tax revenues used toreduce distortionary taxes. Ancillarybenefits are mostly in the range35–80/MgC-1, i.e., about the same order ofmagnitude as the mitigation costs.Distributional effects are mostlyregressive, unless the tax revenues aredistributed in lump-sum fashion with equaltransfers to each household.  相似文献   

19.
There is a need to assess climate change mitigation opportunities in forest sector in India in the context of methodological issues such as additionality, permanence, leakage and baseline development in formulating forestry mitigation projects. A case study of forestry mitigation project in semi-arid community grazing lands and farmlands in Kolar district of Karnataka, was undertaken with regard to baseline and project scenario development, estimation of carbon stock change in the project, leakage estimation and assessment of cost-effectiveness of mitigation projects. Further, the transaction costs to develop project, and environmental and socio-economic impact of mitigation project was assessed. The study shows the feasibility of establishing baselines and project C-stock changes. Since the area has low or insignificant biomass, leakage is not an issue. The overall mitigation potential in Kolar for a total area of 14,000 ha under various mitigation options is 278,380 t C at a rate of 20 t C/ha for the period 2005–2035, which is approximately 0.67 t C/ha/year inclusive of harvest regimes under short rotation and long rotation mitigation options. The transaction cost for baseline establishment is less than a rupee/t C and for project scenario development is about Rs. 1.5–3.75/t C. The project enhances biodiversity and the socio-economic impact is also significant.
N. H. RavindranathEmail:
  相似文献   

20.
Managing forests to increase carbon sequestration or reduce carbon emissions and using wood products and bioenergy to store carbon and substitute for other emission-intensive products and fossil fuel energy have been considered effective ways to tackle climate change in many countries and regions. The objective of this study is to examine the climate change mitigation potential of the forest sector by developing and assessing potential mitigation strategies and portfolios with various goals in British Columbia (BC), Canada. From a systems perspective, mitigation potentials of five individual strategies and their combinations were examined with regionally differentiated implementations of changes. We also calculated cost curves for the strategies and explored socio-economic impacts using an input-output model. Our results showed a wide range of mitigation potentials and that both the magnitude and the timing of mitigation varied across strategies. The greatest mitigation potential was achieved by improving the harvest utilization, shifting the commodity mix to longer-lived wood products, and using harvest residues for bioenergy. The highest cumulative mitigation of 421 MtCO2e for BC was estimated when employing the strategy portfolio that maximized domestic mitigation during 2017–2050, and this would contribute 35% of BC’s greenhouse gas emission reduction target by 2050 at less than $100/tCO2e and provide additional socio-economic benefits. This case study demonstrated the application of an integrated systems approach that tracks carbon stock changes and emissions in forest ecosystems, harvested wood products (HWPs), and the avoidance of emissions through the use of HWPs and is therefore applicable to other countries and regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号