首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于情景分析的杭州市机动车尾气排放控制协同效应研究   总被引:3,自引:0,他引:3  
为了研究杭州市机动车尾气排放控制措施对大气污染物和温室气体的协同减排效应,本文以2015年为基准年,估算2020年杭州市机动车常规大气污染物和温室气体排放量,通过设置8种控制措施情景,测算大气污染物和温室气体的减排量,运用弹性系数法和协同效应坐标系法分析了大气污染物和温室气体的协同效应.结果表明,在各种控制情景下,杭州市机动车大气污染物和温室气体排放量均有削减,且具有正向的协同减排效应.单一控制措施中淘汰高排放老旧车对大气污染物和温室气体排放量的减排效果最明显,协同效应突出,淘汰国Ⅲ柴油货车和推广新能源车的减排效果和协同效应次之,这3种措施是杭州市交通领域减少大气污染物排放和应对气候变化综合管理的关键措施.采取综合性措施或者结构性措施,无疑可以最大幅度削减杭州市机动车大气污染物和温室气体排放,为实现杭州市大气环境质量限期达标和碳排放达峰协同"双达"奠定基础.  相似文献   

2.
东莞是珠三角O_3污染最严重的城市,使用RSM/CMAQ(曲面响应模型)法分析了珠三角区域人为排放的NO_x和VOCs对东莞市O_3浓度变化源贡献.2014基准年分析结果表明,扣除模型域外区域传输及天然源排放对O_3本底浓度贡献(41.00%)后,东莞本地VOCs排放对O_3贡献最大(18.50%),珠三角区域NO_x减排率13%时可持续降低东莞市O_3浓度.进一步使用ABa CAS-SE(空气污染控制成本效益与达标评估系统)对2017、2020、2025东莞市3个未来年O_3污染控制情景进行了费效评估.评估结果显示,NO_x和VOCs控制比例相对较低的2017年控制情景人体健康效益/区域控制成本比约为1.1;而控制比例相对较高的2025年东莞O_3达标情景效益成本比仅为0.1.这说明,在高减排率情景下,以末端治理为主的控制措施经济可行性较差,需综合采取产业/能源结构调整、清洁生产等措施实现NO_x和VOCs的大比例减排,实现东莞O_3的稳定达标.今后将进一步研究NO_x和VOCs减排对PM_(2.5)环境浓度及健康效益影响,开展多目标污染物协同控制费效评估.  相似文献   

3.
樊守彬  郭津津  李雪峰 《环境科学》2018,39(8):3571-3579
应用基于路网车流信息的情景分析方法,对北京城市副中心地区依据不同控制情景,以2015年为基准年建立机动车尾气排放清单.通过计算未来年路网车流信息和各情景下实际路网机动车污染物的排放清单,预测2020年和2025年的污染物排放变化.结果表明,未来10年北京城市副中心路网密度和机动车行驶里程持续增长,与基准情景相比,各控制情景对污染物排放量均有削减,新能源车推广情景对各污染物减排效果显著,且对NOx和PM的减排效果更好.外埠车限行情景对各污染物减排效果均较为显著,淘汰高排放车措施在短时间内削减效果显著,但长期削减效果较弱.综合情景对污染物的削减率达到最佳,机动车污染物CO、NOx、HC和PM排放量分别下降39.0%、58.7%、49.2%和55.5%.  相似文献   

4.
上海市机动车尾气排放协同控制效应研究   总被引:4,自引:0,他引:4  
以2007~2012年为一个时间序列,通过详细调查上海市机动车道路交通等基础资料对机动车各污染物排放量进行测算,并利用协同控制坐标系评价方法,设计单一措施、结构性措施和综合性措施等3种机动车污染减排控制情景.结果表明:2007~2012年,上海市机动车污染物年排放量呈递减趋势,其中摩托车(MC)、小型汽油客车(LDGV)、重型柴油货车(HDDT)和大型柴油客车(HDDV)是机动车污染物主要的排放源,其排放量总和占到机动车污染物总量的90%以上.按当前上海市机动车保有量增长速度,2018年机动车尾气排放的可吸入颗粒物(PM10)增长7%,温室气体增长比例为15%~108%,其中二氧化碳(CO2)增长比例达到45%以上.在各控制情景下污染物和温室气体均有不同程度下降,但减排效果有明显差异.在单一措施控制情景下,淘汰黄标车和提高排放标准对两类污染物的削减效果明显,削减比例均在20%以上;而结构性控制措施对这两类污染物的削减尤为明显,削减比例达到40%以上且正向协同效应突出.  相似文献   

5.
基于曲面响应建模的PM2.5可控人为源贡献解析   总被引:1,自引:0,他引:1  
以东莞市PM_(2.5)重污染月份为例,使用强力法(Brute Force)和RSM/CMAQ曲面响应模型法分别解析了珠三角地区人为源排放对东莞PM_(2.5)的贡献,以及区域传输的可控人为源SO_2、NO_x和一次颗粒物(PM)在不同控制比例下(25%、50%、75%和100%)对东莞PM_(2.5)的累积浓度贡献.强力法研究结果表明,2014年1月珠三角地区人为源二次转化对东莞市PM_(2.5)的贡献(约58.10%)大于一次PM排放贡献(约41.90%),其中,人为源NH_3排放贡献最大,约占总量的21.66%.RSM/CMAQ动态源贡献结果显示,东莞市PM_(2.5)的人为可控源排放贡献(SO_2、NO_x和一次PM)占比为82.17%,受本地排放影响较大,且叠加区域排放的影响;一次PM减排对PM_(2.5)环境浓度的贡献高于仅减排SO_2和NO_x.在减排比例较低时,一次PM减排可有效削减东莞市PM_(2.5)浓度;随控制比例加大,二次前体物(SO_2和NO_x)减排对东莞市PM_(2.5)浓度削减率的影响加大.进一步使用HYSPLIT模式和轨迹聚类分析方法研究了2014年1月东莞市PM_(2.5)污染传输过程.结果显示,该时段共有6条长、短距离污染传输路径,污染物主要来自东莞市东、东北及东南方向,途经其上风向区域(惠州、深圳和广州等)传输至东莞;惠州是各主导上风向出现频率最高的城市,因而其区域传输对东莞PM_(2.5)的贡献也较大,深圳次之.  相似文献   

6.
刘永乐  仝纪龙  谢南洪  杨宏  刘明 《环境工程》2018,36(12):194-199
运用排放系数法建立2016年兰州市道路移动源排放清单,并利用GIS技术和机动车速度-流量模型估算得到限行后的排放清单,对比执行限行措施前后限行区内机动车尾气的排放量和空间分布,得出结论:常态化尾号限行期间,限行区内机动车尾气CO、HC、NO_x、PM_(2.5)、PM_(10)和SO_2的年排放量分别为21 177.39,4 539.84,8 159.60,212.27,235.08,8.97 t;重污染天气下,执行单双号限行措施每天可减少限行区内机动车排放上述污染物的量分别为36.27,5.92,8.20,0.24,0.26,0.01 t,削减率分别为62.69%、47.69%、36.78%、40.59%、40.57%、33.00%;空间上,城关区中西部、七里河区北部、安宁区中部以及西固区中部区域减排效果最明显。  相似文献   

7.
为了研究未来北京市机动车排放控制措施的减排效果,本文基于情景分析法,以2010年为基准年,通过设置3类控制措施情景,估算2011~2020年不同情景下北京市机动车常规污染物排放量,并在基准情景基础上,估算污染物减排量,分析控制措施对不同类型机动车的减排贡献.结果表明,尽管未来北京市机动车保有量会有较大增长,实施机动车排放控制措施仍可取得显著的减排效果.单一措施中,淘汰高排放车减排量最大.其中,淘汰轻型客车可有效减少CO的排放,减排贡献率为89.4%;淘汰重型客车可对NOx、HC和PM10达到有效削减,其贡献率分别为65.5%、55.8%、93.4%.实施新的排放标准对重型柴油车的排放也有明显控制效果,且4种污染物都能得到有效削减.综合实施各种措施的效果最为显著,2020年对CO、NOx、HC、PM10的削减效果分别达到46.4%、42.1%、8.6%和50.6%.  相似文献   

8.
陈长虹  王冰妍 《上海环境科学》2003,22(10):682-686,689
为了研究中国能源政策对减少本地大气污染物排放的效果,以及减缓二氧化碳排放增长速度的附加效应,以上海为例,采用MARKAL模型对基础情景和能源政策情景下的能源消费及大气污染物排放量进行了预测,并分析了能源环境政策减缓二氧化碳排放增长的附加效应。结果显示,实施能源政策后,上海市的SO_2、PM_(10)。排放量均有大幅度降低,并可明显减缓CO_2排放的增长速度。2000~2020年,SO_2排放量将基本保持在2000年的水平,CO_2排放总量的年均增长率将由基础情景下的2.7%减小到能源政策情景下的1.1%~1.2%。  相似文献   

9.
《北京市2013—2017年清洁空气行动计划》的实施,有效改善了空气质量,细颗粒物下降了35.6%。空气质量受内因污染物排放量和外因气象因素的双重影响。本文通过大气污染源排放清单分析了内因污染物排放量的变化,结果表明:2017年与2012年相比,SO_2排放量下降了88%,NO_x排放量下降了36%,PM_(10)排放量下降了51%,PM_(2.5)排放量下降了53%,VOCs排放量下降了25%;NH_3排放量2017年比2014年下降了44%。北京市2013—2017年5种大气污染物的综合减排率与空气中PM_(2.5)浓度下降率的比值为1.3,符合根据北京市科技计划项目《北京市空气质量达标规划研究》中利用CMAQ模型研究得到的大气污染物综合减排率与环境空气PM_(2.5)浓度下降率的半定量关系1.2~1.5。  相似文献   

10.
交通部门作为河南省发展最快的部门,近年来能源消耗量与污染物排放量日益增多,因此研究河南省交通部门节能减排措施显得尤为重要。研究基于LEAP模型构建了河南省交通部门能耗与污染物排放模型,并模拟了基准情景、技术改进情景、模式优化情景及综合节能情景下河南省交通部门2014-2030年的能源需求量和污染物排放情况。结果表明:(1)2014-2030年间河南省交通部门能源消耗量处于高速增长时期,2030年会增加到44.30~75.08 Mtce之间,约为2014年的1.6~2.7倍;(2)在污染物排放方面,CO_2、NO_x、SO_2、CO、PM到2030年最多将有41.04%、37.85%、13.16%、69.37%、68.06%的减排率;(3)比较技术改进情景和模式优化情景下的模拟结果可知,技术改进措施在短期内带来的节能效果较好,而从长远角度来看,交通模式优化措施的节能效果更好;(4)综合节能情景下到2030年能源消费量为44.30 Mtce,CO_2、NO_x、SO_2、CO和PM排放量分别为8 988.03、93.76、16.98、306.09和0.75万t,能源消费量和环境排放量总量均为最少,是一个最优的情景。  相似文献   

11.
12.
李靖  李斌 《环境科学与管理》2010,35(10):173-175
通过安徽吉阳核电厂址气象塔观测系统获取观测数据,研究了该地区的风频规律性,并按南沿江流、北沿江流对塔层风速分布进行幂函数近似拟合,估算了地表粗糙度。结果表明:本区主导风向多集中在偏东北风上,而且频率很高,次主导风向则略有差异;塔层风廓线分布基本符合幂函数关系,由廓线求出的n指数推荐值为:A类0.165,B类0.167,C类0.192,D类0.313,E类0.406,F类0.463;南沿江流方向的地表粗糙度为1.547 063 m,北沿江流方向的地表粗糙度为1.738 45 m。  相似文献   

13.
中学原子结构的课堂教学中,容易产生一些缺乏严谨性的情况。针对能级交错与分裂、洪特规则等内容教学过程中出现的例子进行探讨。  相似文献   

14.
15.
16.
关于长江立法的思考   总被引:3,自引:0,他引:3  
吕忠梅  陈虹 《环境保护》2016,(18):32-38
尽管自2015年国家出台长江经济带建设战略以来,制定"长江法"的呼声不断高涨,但距离形成共识、理性发声尚有较大距离。文章围绕是否需要为长江立法、为长江立一部什么样的法、如何才能立好"长江法"三个基本问题,进行分析,试图描绘出"长江法"这一图景的面貌,作出有说服力的解释。  相似文献   

17.
区域尺度绿洲稳定性评价   总被引:27,自引:0,他引:27  
论文在区域尺度上,探讨了绿洲稳定性的内涵,并以新疆三工河流域绿洲为例,从绿洲所处的地理位置、绿洲与外围荒漠和山地系统之间的相互作用等方面评价了绿洲的区域稳定性。结果表明:①冲洪积扇型绿洲稳定性最高,其次是位于地下水溢出带下方的冲积平原型绿洲,稳定性最差的是湖滨三角洲或散流干三角洲上发育的绿洲;②绿洲的冷岛效应和植被指数可较好地表征绿洲与外围荒漠和山地系统之间的相互作用和评价绿洲的区域稳定性的时间变化。绿洲规模的扩大及绿洲水分和植被的增加将加强绿洲的冷岛效应,提高绿洲的稳定性;归一化差异植被指数增加,表明绿洲内植被覆盖密度增大和植物生物量提高,绿洲的稳定性增强。  相似文献   

18.
模具在金属塑性成形过程中起着十分重要的作用。就一般而言,模具在金属成形过程中的变形被忽略,将之视为刚性体。然而在金属精密成形中,模具的变形对成形件的尺寸精度将产生较大的影响。利用SuperForm软件针对模具在工件挤压过程中的变形进行了有限元数值模拟,对这一问题作了初步分析与探讨,为工厂实际生产的工艺制定、模具设计提供理论参考与依据。  相似文献   

19.
包气带油污土层生物修复现场控制性因素的评价   总被引:4,自引:0,他引:4       下载免费PDF全文
包气带油污土层的生物修复涉及到石油降解微生物、石油污染物的可生物降解性和土壤环境三个方面.本文通过最或然计数法(MPN)、原油族组分柱层析分析方法和色质联机分析等实验手段,研究了淄河滩包气带油污土层的水力学特性、氮磷营养元素、微生物和石油污染物.结果表明,长期受石油污染的土层含有丰富的微生物,其中大部分具有降解石油烃的能力,且土层的渗透性极强,有利于开展油污土层的生物修复.同时,长期的挥发、淋失和转化造成土层中石油污染物主要由高分子、高沸点烃类组成,且油污土层的速效氮、速效磷含量太低,直接增加了生物修复的难度,成为不利于生物修复的影响因素.  相似文献   

20.
汪永晨 《环境》2006,(2):68-69
2005年10月,湖北襄樊绿色汉江会长运建立打来电话,告诉我唐白河清了。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号