首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Vegetation growth models often concentrate on the interaction of vegetation with soil moisture but usually omit the influence of groundwater. However the proximity of groundwater can have a profound effect on vegetation growth, because it strongly influences the spatial and temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. In two papers we describe the behavior of a coupled vegetation-groundwater-soil water model including the competition for water and light. In this first paper we describe the vegetation model, compare the model to measured flux data and show the influence of water and light competition in one dimension. In the second paper we focus on the influence of lateral groundwater flow and spatial patterns along a hillslope. The vegetation model is based on a biophysical representation of the soil-plant-atmosphere continuum. Transpiration and stomatal conductance depend both on atmospheric forcing and soil moisture content. Carbon assimilation depends on environmental conditions, stomatal conductance and biochemical processes. Light competition is driven by tree height and water competition is driven by root water uptake and its water and oxygen stress reaction. The modeled and measured H2O and CO2 fluxes compare well to observations on both a diurnal and a yearly timescale. Using an upscaling procedure long simulation runs were performed. These show the importance of light competition in temperate forests: once a tree is established under slightly unfavorable soil moisture conditions it can not be outcompeted by smaller trees with better soil moisture uptake capabilities, both in dry as in wet conditions. Performing the long simulation runs with a background mortality rate reproduces realistic densities of wet and dry adapted tree species along a wet to dry gradient. These simulations show that the influence of groundwater is apparent for a large range of groundwater depths, by both capillary rise and water logging. They also show that species composition and biomass have a larger influence on the water balance in eco-hydrological systems than soil and groundwater alone.  相似文献   

2.
Distribution of metallic constituents between soil and aerial parts of wild plants has been discussed by using relative ionic impulsions, i/I, defined as functions of concentrations of metallics ions, being i = [M]1/2M, zM the oxidation state of considered metal and I = S i the summation of contribution of metals. For this calculation metals were divided into two groups leading to I macro (K, Na, Ca, Mg, and Mn, elements accumulated in aerial parts) and to I Micro (Fe, Cu, Zn, Co and contaminants accumulated in roots). Relative ionic impulsions may be attributed to an electric potential gradient and show if an active or passive uptake is happening. For macroelements linear relationships were obtained for Mg‐K (global active uptake) and Na‐Mn‐Ca (global passive uptake) with inverse slopes. Passive ions seem to be used as counter ions for helping active assimilation. Calculated potential gradient was close to 20 mV. The same situation was found for microelements and pollutants, where Fe is taken passively helping assimilation of the rest (Cu, Zn, Co, Cd, Pb, Ni and Cr) with a potential gradient close to 13 mV. Influences of other ecological segments (rainfall, dry deposition, airborne dust and irrigation), as well as additions for amending contaminated soils are finally discussed.  相似文献   

3.
In-situ experiments were performed during different seasons to determine uptake rates of PO 3- 4 , NH + 4 and NO - 3 within ecologically representative ranges of nutrient concentrations, of dominant macroalgae in the Baltic Sea. Uptake rates were governed by nutrient concentrations, water temperature and thallus morphology, but not by the phylogenetic affinity of the species. Nitrogen uptake rates were always higher than those of phosphorus at the same concentrations, and NH + 4 –N uptake rates exceeded those of NO - 3 –N. The lowest uptake rates occurred among the late successional, long-lived, coarse species with low surface: volume ratios (Fucus vesiculosus, Furcellaria lumbricalis andPhyllophora truncata). The highest uptake rates were measured for short-lived, opportunistic algae, filamentous or with numerous hairs, (Cladophora glomerata, Enteromorpha ahlneriana, Scytosiphon lomentaria, Dictyosiphon foeniculaceus andCeramium tenuicorne). The latter group also had the highest Vmax:kmax ratios, which indicates a more competitive advantage for nutrient uptake at low concentrations.  相似文献   

4.
采用Claassen的养分吸收机理模型探讨了玉米与大豆幼苗磷吸收过程中的参数敏感性,结果表明:在一般土壤与施肥条件下,玉米与大豆幼苗吸收磷的高度敏感性参数或重要限制因素为根系伸长速率与根半径;在相同土壤供磷条件下,供试大豆幼苗根系的磷摄取能力远低于玉米幼苗根系的磷摄取能力,其原因归结于两者在根系最大养分流Imax与根系伸长速率K两个敏感性参数上的差异;玉米与大豆幼苗磷吸收过程中三种根毛参数的敏感性均较低,这主要与土壤供磷水平较高有关;土壤含水量在玉米幼苗磷吸收过程中表现了极高的敏感性,当土壤含水量降低时,土壤养分供应参数对玉米幼苗磷吸收的敏感性与限制作用均增大。  相似文献   

5.
The uptake of NH 4 + and urea by Chordaria flagelliformis was measured in a perturbed system (batch mode) and in an apparent steady-state system (continuous mode). The maximum uptake rates (Vmax) measured in short-term depletion experiments greatly exceeded those determined under a steady nutrient supply. C. flagelliformis briefly exposed to high nutrient concentrations has an impressive capacity for rapid uptake (high Vmax)_which is uncoupled from growth. In contrast, under continous, homogenous low N concentrations the alga appears well equipped (low half-saturation constant, Km) to take up the available N. The results show that previous work based on batch mode uptake experiments probably overestimated the N requirements for the growth of many seaweeds.  相似文献   

6.
Information on benthic carbon mineralization rates is often derived from the analysis of oxygen microprofiles in sediments. To enable a direct comparison of different sediment environments, it is often desirable to characterize sediments by a single proxy that expresses their “reactivity” towards oxygen. For this, there are three commonly used proxies: the oxygen penetration depth (OPD), the oxygen flux at the sediment-water interface (DOU), and the maximum volumetric oxygen consumption rate (Rmax). The OPD can be directly determined from the oxygen depth profile, while the DOU is usually obtained by a linear fit to the oxygen gradient either in diffusive boundary layer. The oxygen consumption rate Rmax requires the fitting of a reactive-transport model to the data profile. This article shows that the OPD alone is a suboptimal proxy, because it shows a strong dependence on the half-saturation constant Ks, and secondly, because it is sensitive to the particular re-oxidation conditions right above the oxic-anoxic interface. Similarly, the volumetric oxygen consumption rate Rmax is rather strongly dependent on the kinetic model formulation employed. To show this we fitted three different (Bouldin, Blackman and Monod) kinetics to the same oxygen data profiles. When fitting these models, the Rmax values obtained differed by 20% for exactly the same oxygen profile. Accordingly, if one reports Rmax values, it is crucial to specify the kinetic model alongside. Overall, DOU emerges as sediment reactivity proxy which is the least model dependent.  相似文献   

7.
Skeletonema costatum was grown at different steady-state growth rates in ammonium or silicate-limited chemostats. The culture was perturbed from its steady-state condition by a single addition of the limiting nutrients ammonium or silicate. The transient response was followed by measuring nutrient disappearance of the liliting perturbation experiment indicate that three distinct modes of uptake of the limiting nutrient can be distinguished; surge uptake (V s ), internally controlled uptake (V i ), and externally controlled uptake (V e ). An interpretation of these three modes of uptake is given and their relation to control of uptake of the limiting nutrient is discussed. The uptake rates of the non-limiting nutrients were shown to be depressed during the surge of the uptake of the limiting nutrient. Kinetic uptake parameters, K s and V max, were obtained from data acquired during the externally controlled uptake segment, V e . The same V max value of 0. 12 h-1, was obtained under either silicate or ammonium limitation. Estimates of K s were 0.4 g-at NH4-N l-1 and 0.7 g-at Si l-1. Short-term 15N uptake-rate measurements conducted on nitrogen-limited cultures appear to be a combination of V s or V i , or at lower substrate concentrations V s and V e . It is difficult to separate these different uptake modes in batch or tracer experiments, and ensuing problems in interpretation are discussed.Contribution No. 882 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA. This work represents portion of three dissertations submitted to the Department of Oceanography, University of Washington, Seattle, in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   

8.
接种孢囊线虫对大豆生长的影响   总被引:1,自引:0,他引:1  
在温室条件下,研究了不同品种大豆接种大豆孢囊线虫对其根系生长、根瘤及几种矿质元素吸收总量、转移量的影响。结果表明,接种线虫后易感病品种绥农14根瘤数减少,根瘤活性降低,与不接种处理差异显著;感病品种合丰25总根长减少2,与不接种处理差异显著。易感病品种绥农14接种线虫后P元素的吸收总量降低,与不接种处理差异显著。易感病品种绥农14接种线虫后P元素的吸收总量降低,与不接种处理差异显著。感病品种合丰2  相似文献   

9.
The removal of corn stover or production of herbaceous crops such as switchgrass (Panicum virgatum) or big bluestem (Andropogon gerardii) as feedstocks for bioenergy purposes has been shown to have significant benefits from an energy and climate change perspective. There is potential, however, to adversely impact water and soil quality, especially in the United States Corn Belt where stover removal predominantly occurs and possibly in other areas with herbaceous energy crops depending upon a number of geo-climatic and economic factors. The overall goal of this research was to provide a thorough and mechanistic understanding of the relationship between stover and herbaceous crop production management practices and resulting range of impacts on soil and water quality, with a focus on eastern Iowa, USA. Comparisons of the production of herbaceous bioenergy crops to continuous corn (Zea mays L.) and corn-soybean (Glycine max L.) rotations on five different soils representative of the region were performed. Indices for total nutrient (nitrogen and phosphorus) loss to surface water and groundwater, total soil loss due to water and wind erosion, and cumulative soil carbon loss were derived to assess long-term sustainability. The Agricultural Policy/Environmental eXtender (APEX) agroecosystem model was used to quantify the sustainability indices and to generate sufficient data to provide a greater understanding of variables that affect water and soil quality than previously possible. The results clearly show the superiority of herbaceous crop production from a soil and water quality perspective. They also show, however, that compared to traditional cropping systems (e.g., corn-soybean rotations with conventional tillage), soil and water quality degradation can be reduced under certain conditions at the same time stover is removed.  相似文献   

10.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

11.
An integrated process-based model was used to study how the changing climate affects the availability of water and nitrogen, and consequently the dynamics of productivity of Norway spruce (Picea abies) on sites with different initial soil water conditions in southern Finland over a 100-year period. The sensitivity of the total stem volume growth in relation to short-term availability of water and nitrogen was also analyzed. We found that a high proportion (about 88–92%) of the total precipitation was lost in total evapotranspiration (incl. canopy evaporation (Ec), transpiration (Et) and ground surface evaporation (Eg)), under both current and changing climate. Furthermore, under the changing climate the cumulative amount of Ec and Eg were significantly higher, while Et was largely lower than under the current climate. Additionally, the elevated temperature and increased expansion of needle area index (L) enhanced Ec. Under the changing climate, the increasing soil water deficit (Wd) reduced the canopy stomatal conductance (gcs), the Et, humus yield (H, available nitrogen source) and nitrogen uptake (Nup) of the trees. During the latter phases of the simulation period, the canopy net photosynthesis (Pnc) was lower due to the reduced Nup and soil water availability. This also reduced the total stem volume production (Vs) on the site with the lower initial soil moisture content. The growth was slightly more sensitive to the change in precipitation than to the change in nitrogen content of the needles, when the elevated temperature was assumed. According to our findings, drought stress episodes may become more frequent under the changing climate. Thus, adaptive management strategies should be developed to sustain the productivity of Norway spruce in these conditions, and thus, to mitigate the adverse impacts of climate change.  相似文献   

12.
Modelling nutrient uptake by crops implies considering and integrating the processes controlling the soil nutrient supply, the uptake by the root system and relationships between the crop growth response and the amount of nutrient absorbed. We developed a model that integrates both dynamics of maize growth and phosphorus (P) uptake. The crop part of the model was derived from Monteith's model. A complete regulation of P-uptake by the roots according to crop P-demand and soil P-supply was assumed. The soil P-supply to the roots was calculated using a diffusion equation and assuming that roots behave as zero-sinks. The actual P-uptake and crop growth were calculated at each time step by comparing phosphate and carbohydrate supply–demand ratios. Model calculations for P-uptake and crop growth were compared to field measurements on a long term P-fertilization trial. Three P-fertilization regimes (no P-fertilization, 42.8 kg P ha−1 year−1 and 94.3 kg P ha−1 year−1) have led to a range of P-supply. Our model correctly simulated both the crop development and growth for all P-treatments. P-uptake was correctly predicted for the two non-limiting P-treatments. Nevertheless, for the limiting P-treatment, P-uptake was correctly predicted during the early period of growth but it was underestimated at the last sampling date (61 day after sowing). Several arguments for under-prediction were considered. However, most of them cannot explain the observed magnitude in discrepancy. The most likely reason might be the fact that biomass allocation between shoot and root must be modelled more precisely. Despite this mismatch, the model appears to provide realistic simulations of the soil–plant dynamic of P in field conditions.  相似文献   

13.
The kinetic response of ammonium- or silicate-limited and ammonium- or silicatestarved populations of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida was determined by a single addition of the limiting nutrient to a steady-state culture and subsequent monitoring of the nutrient disappearance of the limiting and non-limiting nutrients at frequent time intervals. The kinetic response of nonlimited (nutrient) populations of these three species was also determined. Three distinct modes of the uptake of the limiting nutrient were observed for ammonium-or silicate-limited populations of these three species, surge uptake (V s ), internally (cellular) controlled uptake (V i ), and externally (ambient limiting nutrient concentration) controlled uptake (V e ). Non-limited populations did not exhibit the three distinct segments of uptake, V s , V i and V e . Estimates of the maximal uptake rate (V max) and the Michaelis constant (K s ) were obtained from nutrient-limited populations during the V e segment of the uptake curve. Pooled values of V e for the three ammonium-limited populations yielded V max and K s estimates of 0.16 h-1 and 0.5 g-at NH4–N l-1. Kinetic data derived from the V e segment of the uptake curve for silicate-limited populations yielded different values of V max and K s for each of the three species. In a number of parameters that were measured, T. gravida was clearly different from C. debilis and S. costatum and its recovery from nutrient starvation was the slowest. Recovery of all species from silicate limitation or starvation was slower than from ammonium limitation or starvation. Ammonium-starved populations maintained a maximal uptake rate at a substrate concentration an order of magnitude lower (0.1 g-at NH4–N l-1) than that observed for NH4-limited populations (1.0 g-at NH4–N l-1). Adaptation to the severity of the nutrient limitation occurred as changes in the magnitude of cellular characteristics, such as short-term uptake potential (V s ) and affinity for the substrate (K s ). The consequence of these results are discussed in terms of another possible mechanism to explain changes in species composition and succession in nutrient-depleted environments.Contribution No. 944 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

14.
A crucial challenge for including biophysical photosynthesis–transpiration models into complex crop growth models is to integrate the plasticity of photosynthetic processes that is related to factors like nitrogen (N) content, age, and rank of leaves, or to the adaptation of plants to growth temperature (Tg). Here we present a new version of the combined photosynthesis-stomatal conductance model LEAFC3-N [Müller, J., Wernecke, P., Diepenbrock, W., 2005. LEAFC3-N: a nitrogen sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecological Modelling 183, 183–210.] that was revised, extended and completely re-parameterised for barley (Hordeum vulgare L.) with special regard for these factors to facilitate the use of the model in ecophysiological studies and in crop modelling. The analysis is based on novel comprehensive data on photosynthetic CO2 and light response curves measured at two oxygen concentrations and different temperatures on leaves of barley (H. vulgare L.) differing in leaf N and chlorophyll content. Plants were grown in climatic chambers or in the field at different N and Tg.We thoroughly revised the existing and introduced new nitrogen relations for key model parameters that account for a linear increase with leaf N of Vmax, Jmax, Tp, and Rdmax (maximum rates of carboxylation, electron transport, triose phosphate export, and mitochondrial respiration), a saturation-type increase of φ (quantum yield of electron transport), and a non-linear decrease of θ and m (curvature of the light dependence of electron transport rate, scaling factor of the stomata model). The adaptation of photosynthetic characteristics to Tg was included into the model by linear relations that were observed between Tg and the activation energy ΔHa of the temperature response characteristics of Vmax, Jmax, and Tp as well as of the nitrogen dependency of these characteristics. Based on an analysis of diurnal time courses of gas exchange rates it was found necessary including not only the relation between leaf water potential (Ψ) and stomatal conductance as used originally in LEAFC3, but additional effects on Vmax and Jmax. With the above-listed extensions, the model was capable to reproduce the observed plasticity and the recorded diurnal time courses of gas exchange rates fairly well. Thus, we conclude that the new model version can be used under a broad range of conditions, both for ecophysiological studies and as a submodel of crop growth models. The results presented here for barley will facilitate adapting photosynthesis models like LEAFC3-N to other C3-species as well. The modelling of the effects of drought stress should be further elaborated in future based on more specific experiments.  相似文献   

15.
Phosphate uptake by intertidal algae in relation to zonation and season   总被引:3,自引:0,他引:3  
The removal of phosphate from ambient seawater by whole plants of five species of fucoid algae, collected from the east coast of N. Ireland in 1988 and 1989, was followed over 6-h periods. A transient uptake pattern was observed forPelvetia canaliculata (L.) Dcne. et Thuret,Fucus spiralis L.,F. vesiculosus L. andF. serratus L., consisting of an initial period of high uptake, followed by a phase of zero uptake and then a period at an intermediate rate.Ascophyllum nodosum (L.) Le Jolis had a constant slow rate of uptake over 6 h. The initial uptake rate ofF. spiralis was significantly greater than that of any other species. Phosphate uptake over a 2-h period was measured at concentrations ranging from that of ambient seawater to 25µg-at. l–1 for whole plants ofF. spiralis andF. serratus, using a large scale batch method. A small scale batch method was used for whole plants ofP. canaliculata and sections of the other four species investigated. Uptake abilities of the algae at low concentrations of phosphate were compared using the parameterV 1 (the uptake rate at 1µg-at. l–1) and at high concentrations usingV max, the maximum uptake rate. These kinetic parameters of uptake were calculated using a method that avoids bias and permits statistical evaluation of the results. The fucoid algae studied could be divided into two distinct groups on the basis of their abilities to take up phosphate from seawater.P. canaliculata andA. nodosum had low values ofV 1 in winter, which were also correlated with their positions on the shore and did not vary between winter and summer. TheFucus species had higher values ofV 1 in winter, which were also correlated with their positions on the shore. In summer, however,V 1-values for these species decreased and no longer correlated with their shore heights. TheV max-value forF. spiralis was higher in winter than in summer but was signifcantly greater than that of any other species at all times of year. The ecological significance ofV max is discussed in relation to nutrient limitation and the possible occurrence of patches of high nutrient concentration in the intertidal environment.  相似文献   

16.
The aim of this work was to test a process-based model (hydrological model combined with forest growth model) on the simulation of seasonal variability of evapotranspiration (ET) in an even-aged boreal Scots pine (Pinus sylvestris L.) stand over a 10 year period (1999-2008). The water flux components (including canopy transpiration (Et) and evaporation from canopy (Ec) and ground surface (Eg) were estimated in order to output the long-term stand water budget considering the interaction between climate variations and stand development. For validation, half-hourly data on eddy water vapor fluxes were measured during the 10 growing seasons (May-September). The model predicted well the seasonal course of ET compared to the measured values, but slightly underestimated the water fluxes both in non-drought and drought (2000, 2003 and 2006) years. The prediction accuracy was, on average, higher in drought years. The simulated ET over the 10 years explained, on average, 58% of the daily variations and 84% of the monthly amount of ET. Water amount from Et contributed most to the ET, with the fractions of Et, Ec and Eg being, on average, 67, 11 and 23% over the 10-year period, respectively. Regardless of weather conditions, the daily ET was strongly dependent on air temperature (Ta) and vapor pressure deficit (Da), but less dependent on soil moisture (Ws). On cloudy and rainy days, there was a non-linear relationship between the ET and solar radiation (Ro). During drought years, the model predicted lower daily canopy stomatal conductance (gcs) compared with non-drought years, leading to a lower level of Et. The modeled daily gcs responded well to Da and Ws. In the model simulation, the annual LAI increased by 35% between 1999 and 2008. The ratio of Ec: ET correlated strongly with LAI. Furthermore, LAI reduced the proportion of Eg as a result of the increased share of Ec and Et and radiation interception. Although the increase of LAI affected positively Et, the contribution of Et in ET was not significantly correlated with LAI. To conclude, although the model predicted reasonably well the seasonal course of ET, the calculation time steps of different processes in the model should be homogenized in the future to increase the prediction accuracy.  相似文献   

17.
Vertical profiles of physical, chemical and phytoplanktonic parameters are described, at the level of the thermocline, in the area of Banyuls-sur-Mer, France. The results show that the thermocline divides two masses of water: (1) Mediterranean surface water with low nutrient concentrations and a salinity below 38.00 ‰; (2) deep, nutrient-rich upwelled water (N?NO3 >3 μat-g·l-1, P?PO4>0.3 μat-g·l-1, >38.30 ‰ S), which comes from the upper limit of the Mediterranean intermediate water, usually located at the 200 m level. Consequently, conditions are suitable for high production rates at the bottom of the thermocline, where Chl a is above 0.5 mg·m-3; dominant species are Nitzschia delicatissima and N. pungens. A diagram is presented explaining the different effects of the pycnoclines on primary production: eutrophication at the pycnocline levels is the result of passive accumulation of phytoplankton and organic matter during sedimentation, and/or of reduced diffusion of nutrients from deep waters towards the surface.  相似文献   

18.
This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers’ breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.  相似文献   

19.
Anemonia sulcata Pennant absorbs and accumulates tritiated D-glucose dissolved in sea water in natural concentrations (80 μg/l). The rate of decrease of glucose concentration in the sea water can best be described by an exponential function, when the concentration of added glucose exceeds 20 to 25 μg/l. The glucose, absorbed through the ectoderm, is immediately metabolized. This is determinable experimentally by tritiated water which is emitted into the sea water. The rate of uptake estimated experimentally was in the range 3 to 4 μg glucose/g wet weight/h, whilst the rate calculated by V max (maximum absorption rate) was 20 μg/g wet weight/h. The concentration of free glucose in the tentacle tissue is greater by a factor of 105 than that of the medium in which absorption takes place. Absorption is temperature-dependent; the Q10 between 15° and 25°C exceeds 2; translocation is, therefore, energy-dependent. Absorption was diminished by inhibitors, especially by phlorizin. The actinians increase their energy reserves by absorption of glucose (and other dissolved organic substances). The energetic net profit by taking up glucose comprises up to 50% of the energy amount which is equivalent to the oxygen consumption.  相似文献   

20.
采用Claassen的养分吸收机理模型定量评价了不同土壤条件下,机理模型中未考虑的其它适应机制对玉米与大豆幼苗P吸收的作用。结果表明:同样土壤养分胁迫条件下,供试玉米与大豆幼苗的其它适应机制对P吸收的贡献率分别为1/4与1/5;土壤养分胁迫、土壤水分胁迫、土壤供N形态、土壤性质及土壤供Ca水平或pH值对这一P吸收适应机制的作用程度均有一定的影响,土壤水分胁迫能明显加强这一适应机制对玉米幼苗P吸收的作用;粘质棕红壤上养分胁迫与水分胁迫同时作用时,这一适应机制对玉米幼苗P吸收的贡献率可达69%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号