首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The family of tiger beetles (Cicindelidae) is an appropriate indicator taxon for determining regional patterns of biodiversity because (1) its taxonomy is stabilized; (2) its biology and general life history are well understood, (3) individuals are readily observed and manipulated in the field, (4) the family occurs world-wide and in a broad range of habitat types; (5) each species tends to be specialized within a narrow habitat; (6) patterns of species richness are highly correlated with those of other vertebrate and invertebrate taxa; and (7) the taxon includes species of potential economic importance. Logistical advantages provide some of the strongest arguments for selecting tiger beetles as an appropriate indicator taxon. Species numbers of tiger beetles are relatively well known for 129 countries. Eight countries alone account for more than half the world total of 2028 known species. Species numbers are also indicated for eleven biogeographical zones of the world. For gridded squares across North America, the Indian subcontinent, and Australia, species richness of tiger beetles, birds, and butterflies shows significant positive correlations. However, tiger beetle species numbers can be reliably determined within fifty hours on a single site, compared to months or years for birds or butterflies, and the advantage of using tiger beetles in conservation biology is evident  相似文献   

2.
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty‐one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within‐ and across‐taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. Selección de Múltiples Especies Paraguas para la Diversidad Funcional y Taxonómica para Representar la Biodiversidad Urbana  相似文献   

3.
Abstract:  The use of a surrogate taxon in conservation planning has become questionable because recent evidence suggests that the correlation of species richness between pairs of taxa is highly variable both taxonomically and geographically. Species richness is only one measure of species diversity, however, and recent studies suggest that investigations of cross-taxon congruence should consider a broader range of assessment techniques. The cross-taxon congruence of community similarity between sites among taxa has rarely been examined and may be the most relevant measure of species diversity in the context of coarse-filter conservation strategies. We examined cross-taxon congruence patterns of species richness and community similarity (Bray-Curtis similarity) among birds, butterflies, and vascular plants in montane meadow habitats in the Greater Yellowstone Ecosystem. Although patterns of species richness (Spearman rank correlation) varied between taxa, we consistently found a positive correlation in community similarity (Mantel test) between all pair-wise comparisons of the three taxa (e.g., sites with similar bird communities also had similar butterfly communities). We suggest that the success of a surrogate taxon depends on the technique used to assess surrogacy and the specific approach to conservation planning. In the context of coarse-filter conservation, measures of community similarity may be more appropriate than measures of species richness. Furthermore, the cross-taxon congruency of community similarity in our study suggests that coarse-filter conservation may be tenable in montane meadow communities.  相似文献   

4.
Conservation Value of Multiple-Use Areas in East Africa   总被引:3,自引:0,他引:3  
Abstract:  Despite wide agreement that strictly protected areas (World Conservation Union categories I–III) are the best strategy for conserving biodiversity, they are limited in extent and exclude many species of key conservation importance. In contrast, multiple-use management areas (categories IV–VI), comprising >60% of the world's protected-area network, are often considered of little value to biodiversity conservation, particularly in Africa, where they typically contain few charismatic large mammals. We sampled small mammals, amphibians, birds, butterflies, and trees at 41 sites along a four-step gradient of increasing human activity and decreasing conservation protection, from a well-protected Tanzanian national park to nonintensive agricultural land. Although preliminary, our results indicate that species richness of these five taxa did not decline along this gradient, but different management areas, occupying areas of largely similar habitat, hosted distinct communities of each taxon. Differences in species composition in the absence of manifest differences in species richness highlight the importance of developing landscape-scale conservation strategies and the danger of using either a limited suite of indicator taxa or umbrella species as surrogates for biodiversity. Although strictly protected areas perform a unique and vital conservation service in East Africa by protecting large mammals, areas that allow varied resource extraction activities still possess vital and complementary conservation value.  相似文献   

5.
Usefulness of the Umbrella Species Concept as a Conservation Tool   总被引:20,自引:0,他引:20  
Abstract:  In the face of limited funding, knowledge, and time for action, conservation efforts often rely on shortcuts for the maintenance of biodiversity. The umbrella species concept—proposed as a way to use species requirements as a basis for conservation planning—has recently received growing attention. We reviewed the literature to evaluate the concept's general usefulness. An umbrella species is defined as a species whose conservation is expected to confer protection to a large number of naturally co-occurring species. This concept has been proposed as a tool for determining the minimum size for conservation areas, selecting sites to be included in reserve networks, and setting minimum standards for the composition, structure, and processes of ecosystems. Among the species suggested as potential umbrellas, most are large mammals and birds, but invertebrates are increasingly being considered. Eighteen research papers, most of which were based on hypothetical reserves or conservation networks, have provided evaluations of umbrella species schemes. These show that single-species umbrellas cannot ensure the conservation of all co-occurring species because some species are inevitably limited by ecological factors that are not relevant to the umbrella species. Moreover, they provide evidence that umbrella species from a given higher taxon may not necessarily confer protection to assemblages from other taxa. On the other hand, multi-species strategies based on systematic selection procedures (e.g., the focal species approach) offer more compelling evidence of the usefulness of the concept. Evaluations of umbrella species schemes could be improved by including measures of population viability and data from many years, as well as by comparing the efficiency of the proposed scheme with alternative management strategies.  相似文献   

6.
Kerswell AP 《Ecology》2006,87(10):2479-2488
Species richness patterns are remarkably similar across many marine taxa, yet explanations of how such patterns are generated and maintained are conflicting. I use published occurrence data to identify previously masked latitudinal and longitudinal diversity gradients for all genera of benthic marine macroalgae and for species in the Order Bryopsidales. I also quantify the size, location, and overlap of macroalgal geographic ranges to determine how the observed richness patterns are generated. Algal genera exhibit an inverse latitudinal gradient, with biodiversity hotspots in temperate regions, while bryopsidalean species reach peak diversity in the tropics. The geographic distribution of range locations results in distinct clusters of range mid-points. In particular, widespread taxa are centered within tight latitudinal and longitudinal bands in the middle of the Indo-Pacific and Atlantic Oceans while small-ranged taxa are clustered in peripheral locations, suggesting that variation in speciation and extinction are important drivers of algal diversity patterns. Hypotheses about factors that regulate diversity contain underlying assumptions about the size and location of geographic ranges, in addition to predictions as to why species numbers will differ among regions. Yet these assumptions are rarely considered in assessing the validity of the prevailing hypotheses. I assess a suite of hypotheses, suggested to explain patterns of marine diversity, by comparing algal-richness patterns in combination with the size and location of algal geographic ranges, to the richness and range locations predicted by these hypotheses. In particular, the results implicate habitat areas and ocean currents as the most plausible drivers of observed diversity patterns.  相似文献   

7.
Abstract: Designing reserves that preserve the habitat of many coexisting and threatened species often involves use of conservation surrogates, such as umbrella species. Typically, animals with legal protection are used as umbrella species, and these selections are overwhelmingly vertebrates. The tacit assumption that vertebrates automatically serve as conservation umbrellas for invertebrates rarely has been justified. The California Gnatcatcher (   Polioptila californica, Muscicapidae ), is a federally listed and endangered species in the United States and has been used as an umbrella species for the conservation of coastal sage scrub in southern California. Conservation planning efforts for this community follow a general paradigm of using vertebrate-based reserve designs as de facto protection for invertebrate cohabitants. To test the effectiveness of this strategy, I surveyed 50 patches of coastal sage scrub in San Diego County for three species of Lepidoptera: Mormon metalmark ( Apodemia mormo, Riodinidae ), Bernardino blue, (   Euphilotes bernardino, Lycaenidae ), and Electra buckmoth (    Hemileuca electra, Saturniidae ). The presence of the gnatcatcher was a poor indicator of the presence of these insects. Only the largest or most recently separated habitat patches supported all three species of Lepidoptera, but the gnatcatcher was present on nearly every site, regardless of size. Results indicate that vertebrates do not automatically function as umbrella species for invertebrate cohabitants. Reserve designs based on vertebrate umbrella species, which assume invertebrates will be protected, may result in the loss of a large portion of invertebrate diversity.  相似文献   

8.
The cichlid fishes of the Great Lakes of Africa are extraordinary biological assemblages. Conservation strategies are urgently needed for these fish faunas, due to increased threats from over-fishing, habitat degradation, and species introductions. Here I investigate the patterns of biodiversity of the rock-dwelling cichlid fishes (known as mbuna) of Lake Malawi and present a series of recommendations to enhance their conservation. Specifically, I examine intralacustrine biogeograpbic distributions and diversity, and levels of endemism for both mbuna species and genera. The biogeographic patterns show a high degree of variation for both taxonomic designations. Significant relationships are found between diversity and distribution patterns. Speciose genera are more widespread and habitats close to other lands support higher biodiversity than in isolated islands. The results indicate that the genus level may be the appropriate taxonomic designation to consider for conservation purposes, and that areas of high generic endemism, such as the Muleri Islands, are significant for conservation. In order to account for geographic variation in biodiversity, consideration should be given to expanding Lake Malawi National Park boundaries to include areas in the northern and central parts of the lake, especially Likoma and Chisumulu Islands and Nkhata Bay. I discuss the establishment of an international park and the expansion of conservation efforts to include the non-mbuna cichlids. An ecosystem approach to biodiversity conservation and management is advocated.  相似文献   

9.
Abstract: Biodiversity is too complex to measure directly, so conservation planning must rely on surrogates to estimate the biodiversity of sites. The species richness of selected taxa is often used as a surrogate for the richness of other taxa. Surrogacy values of taxa have been evaluated in diverse contexts, yet broad trends in their effectiveness remain unclear. We reviewed published studies testing the ability of species richness of surrogate taxa to capture the richness of other (target) taxa. We stratified studies into two groups based on whether a complementarity approach (surrogates used to select a combination of sites that together maximize total species richness for the taxon) or a richness‐hotspot approach (surrogates used to select sites containing the highest species richness for the taxon) was used. For each comparison of one surrogate taxon with one target, we used the following predictor variables: biome, spatial extent of study area, surrogate taxon, and target taxon. We developed a binary response variable based on whether the surrogate taxon provided better than random representation of the target taxon. For studies that used an evaluation approach that was not based on better than random representation of target taxa, we based the response variable on the interpretation of results in the original study. We performed a categorical regression to elucidate trends in the effectiveness of surrogate taxa with regard to each of the predictor variables. A surrogate was 25% more likely to be effective with a complementarity approach than with a hotspot approach. For hotspot‐based approaches, biome, extent of study, surrogate taxon, and target taxon significantly influenced effectiveness of the surrogate. For complementarity‐based approaches, biome, extent, and surrogate taxon significantly influenced effectiveness of the surrogate. For all surrogate evaluations, biome explained the greatest amount of variation in surrogate effectiveness. From most to least, extent, surrogate taxon, and target taxon explained the most variation after biome. Surrogate taxa were most effective in grasslands and in some cases boreal zones, deserts, and tropical forests; surrogate taxa also were more effective in studies examining larger areas. Herpetofauna were the most effective taxon as both surrogate and target when a richness‐hotspot approach was used; however, herpetofauna were analyzed in fewer studies, so this result is tentative. For complementarity approaches, taxa that are easy to measure and tend to have a large number of habitat specialists distributed collectively across broad environmental gradients (e.g., plants, birds, and mammals) were the most effective surrogates.  相似文献   

10.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species.  相似文献   

11.
Despite international policy implementation to reduce atmospheric acid deposition and restore natural resources from cultural acidification, evidence of ecological recovery is equivocal. Failure to meet recovery goals means that acidification still threatens biodiversity in many areas of the world. Managers thus need information to manage biodiversity, especially its components that are sensitive to stress (acid-sensitive taxa). We analyzed 20-year time series (1988-2007) of water quality and littoral invertebrates in acidified and circum-neutral lakes across Sweden to evaluate regional biodiversity dynamics and the extent to which changes in water quality affect these dynamics. We used multivariate time series modeling to (1) test how individual species groups within invertebrate communities track changes in the abiotic environment and (2) reveal congruencies of taxon contributions to species group change across lakes. Chemical recovery in the lakes was equivocal, and increases of pH and alkalinity were observed in subsets of acidified and circum-neutral lakes. Time series analyses revealed two different patterns of species groups for invertebrate communities across lakes; the first species group showed monotonic change over time, while the second group showed fluctuating temporal patterns. These independent species groups correlated distinctly with different sets of environmental variables. Recovery of pH and alkalinity status was associated with species group patterns only in a few lakes, highlighting an overall weak recovery of invertebrate species. The sets of species, including acid-sensitive taxa, composing these species groups differed markedly across lakes, highlighting context-specific responses of invertebrates to environmental variation. These results are encouraging because disparate local-scale dynamics maintain the diversity of sensitive invertebrate species on a regional scale, despite persisting acidification problems. Our study can inform and help refine current acidification-related policy focused on sensitive biodiversity elements.  相似文献   

12.
We present new distibutional data for squamate reptiles (amphisbaenians, lizards, and snakes) from several Neotropical sites and estimate species (alpha) diversity at each site. Species compositions at all localities were used to estimate similarity in species richness within and between each of the major regions sampled: Central American lowland forests, Amazonia, and South American dryland forests. We used these estimates to derive maps summarizing overall regional patterns (beta diversity) of squamate richness. Both groups clearly reveal distinct faunal divisions among the three regions. Within Amazonia, lizards and snakes show a clear division in species composition between a "western edge" cluster of sites adjacent to eastern Andean slopes and all other localities in the central and eastern regions. Within this east-central block of sites, a further division is evident between localities north and south of the main Amazon River channel. These general regions of squamate similarity were qualitatively assessed in Brazil's portion of Amazonia within the context of the distribution of all state, federal, and Indian lands that are in principle afforded some level of protection and therefore offer potential for biodiversity conservation. We assess the potential for biodiversity conservation relative to the size of reserves needed to sustain populations of 500 individuals of the three largest species of snakes and to the distribution of potential conservation areas relative to the regional patterns of diversity identified by the statistical analysis. We conclude that the sizes and distributions of reserves are adequate to sustain viable populations of squamates if these areas can be counted on to play a major role in biodiversity conservation.  相似文献   

13.
Species are being lost from isolated reserves as predicted by ecological theory, prompting calls for larger reserves with higher species immigration rates. However, some large islands have lost a large proportion of their species, whereas some small islands have not lost any. Conservation efforts would be more efficient if the cause of such variation in the relationships among number of species lost, island size, and immigration rate were known. Observed species losses could be affected by the time since islands were isolated, species immigration rates, species extirpation rates, the pre-fragmentation diversity of the region relative to steady state, or overestimation of the pre-fragmentation diversity of islands. To test the last three hypotheses, I compared the intersection points of the island, intraprovincial, and interprovincial species-area relationships of terrestrial mammals from nine archipelagos of land-bridge islands and terrestrial habitat isolates. Species losses from three archipelagos were greater than expected due to reduced immigration rates alone, although I could not resolve if this was due to increased extirpation rates or overestimation of the pre-fragmentation diversity of the islands. Analysis of six archipelagos indicates that the diversity of mammals in two regions of North America is currently below steady state, probably due to the extinction of mammals and glacial retreat during the late Pleistocene. These results have direct implications for reserve planning. When provincial diversity is below steady state, some combinations of reserve size and species immigration rate will allow reserves to maintain their pre-isolation diversity. However, the diversity of provinces relative to steady state is likely to vary, so conservation of a given proportion of a province may not always conserve the same proportion of its species. I present a new species-area relationship for islands formed by fragmentation that replaces the parameter c (fitted constant) with a rotation point. Estimation of this rotation point will allow reserve planners to separate the effects of extirpation and immigration rates on species losses from islands, identify provinces that are below steady-state diversity, and estimate the combinations of reserve size and immigration rate that will prevent loss of species from reserves.  相似文献   

14.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   

15.
Abstract:  A promising shortcut for quantifying species patterns is to use genera and families as surrogates of species. At large spatial scales, concurrence between patterns of richness, rarity, and composition of species and higher taxa is generally high. Only a few researchers, however, have examined this relationship at the local scale, which is frequently the relevant scale in land-use conflicts. We investigated the reliability of the higher-taxon approach in assessing patterns of species richness, rarity, and composition at the local scale. We studied diversity patterns of three commonly used surrogate taxa: vascular plants, ground-dwelling beetles, and moths. We conducted year-round field surveys for these taxa in the Jerusalem Mountains and the Judean foothills, Israel. Richness and composition of species were highly correlated with richness and composition of genera for all taxa. At the family level, correlations with richness and composition of species were much lower. Excluding monotypic genera and families did not affect these relations. Rarity representation based on higher taxa varied considerably depending on the taxon, and rarity scale and was weaker compared with richness and composition representation. Cumulative richness curves of species and genera showed similar patterns, leveling off at equivalent sampling efforts. Genus-level assessments were a reliable surrogate for local patterns of species richness, rarity, and composition, but family-level assessments performed poorly. The advantage of using coarse taxonomic scales in local diversity surveys is that it may decrease identification time and the need for experts, but it will not reduce sampling effort.  相似文献   

16.
Understanding threatened species diversity is important for long‐term conservation planning. Geodiversity—the diversity of Earth surface materials, forms, and processes—may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species’ diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock‐type and soil‐type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity‐weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1‐km2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity‐weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage is an important principle in conservation.  相似文献   

17.
Abstract:  Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges.  相似文献   

18.
Ascidian fauna have been intensively studied in the Atlantic Ocean, adjacent subpolar regions and Mediterranean Sea for the last 20 years. Here, we have described current species distribution patterns and identified nested areas of endemism using parsimony analysis of endemicity (PAE). We also identified diversity hotspots, areas in which species occurred exclusively, and gaps in information about distribution patterns. Finally, we compared ascidian distributions among various proposed biogeographic divisions. The comprehensive literature review provided data on the geographic distribution of 627 species of ascidians. In the West Atlantic, there were three peaks in richness: north Caribbean—96 species, São Paulo and Rio de Janeiro—61 species and the subantarctic region—54 species. In the eastern Atlantic, the greatest richness occurred on Spanish and French coasts—91 species and in Senegal—83 species. In the Mediterranean, the greatest richness was in Spain and France—142 species and Italy—127 species. PAE designated 20 areas of endemism nested within eight larger regions that were more or less in agreement with realms or provinces of previous studies: North Atlantic, Caribbean, southeastern Brazil, Magellanic, Subantarctic, Tropical West Africa, South Africa, and Mediterranean. Distribution patterns of the Ascidiacea, in general, followed previously proposed divisions of regions and provinces in the Atlantic and adjacent polar regions, but not subdivisions of these regions.  相似文献   

19.
Abstract: Phylogenetic diversity measures rank areas for biodiversity conservation priorities based on information encoded in phylogenies (cladograms). The goal of these ranks for conservation is to consider as many factors as possible that provide additional taxic information, such as taxa richness, taxa distributional patterns, area endemicity, and complementarity between areas. At present there are many measures that consider phylogenetic information, including node-based, genetic-distance, and feature-based measures. We devised a modified phylogenetic node-based index that we call "taxonomic endemicity standardized weight," which considers not only the taxonomic distinctness of the taxa that inhabit a given area but their endemicity as well. Once the standardized weight of the taxonomic endemicity identifies the area of highest priority, complementarity can be used to identify the second area and so on. We used this node-based index to rank priority areas for conservation in southern South America, and we compared the results of our rankings to results based on other node-based indexes. Our index identified Santiago district, in Central Chile province, as the highest priority area for conservation, followed by Maule, Malvinas, and districts of Subantarctic province. Malvinas exhibits greater complementarity relative to Santiago than Maule does, however, so Malvinas is ranked second in priority. Indexes based on phylogenetic information measure the evolutionary component of biodiversity and allow one to identify areas that will ensure the preservation of evolutionary potential and phylogenetically rare taxa. The modified index we propose is sensitive to taxic distinctness and endemicity as well and allows information from diverse taxa to be combined (i.e., different cladograms). The use of complementarity allows for preservation of the maximum quantity of taxa in a minimal number of protected areas.  相似文献   

20.
Abstract:  We assessed the conservation priority of 18 freshwater ecoregions in southern South America on the basis of Aegla (genus of freshwater crabs) genetic diversity and distribution. Geographical distributions for 66 Aegla species were taken from the literature and plotted against ecoregions and main river basins of southern South America. Species richness and number of threatened and endemic species were calculated for each area. To assess taxonomic and phylogenetic diversity, we generated a molecular phylogeny based on DNA sequences for one nuclear (28S) and 4 mitochondrial (12S, 16S, COI, and COII) genes. All species richness and phylogenetic methods agreed, to a large extent, in their rankings of the importance of conservation areas, as indicated by the Spearman's rank correlation coefficient ( p < 0.01); nonetheless, some of the lowest correlations were observed between taxonomic and phylogenetic diversity indices. The 5 ecoregions of the Laguna dos Patos Basin (Eastern Brazil), Central Chile, South Brazilian Coast, Chilean Lakes, and Subtropical Potamic Axis (northern Argentina and southern Uruguay and Paraguay) had the highest biodiversity scores. Conservation of these regions will preserve the largest number of species and the greatest amount of genetic diversity within the South American freshwater Aegla fauna. Biodiversity across rivers and within areas was heterogeneously distributed in the ecoregions of Upper Paraná, Ribeira do Iguape, Upper Uruguay, and South Brazilian Coast (i.e., one river showed significantly more biodiversity than any other river from the same ecoregion), but homogeneously distributed in the other ecoregions. Hence, conservation plans in the former regions will potentially require less effort than plans in the latter regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号