首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   22篇
灾害及防治   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  1995年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Non‐native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non‐native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non‐native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non‐native species; help disentangle which aspects of scientific debates about non‐native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio‐economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No‐Nativas  相似文献   
2.
3.
Abstract:  Considerable controversy surrounds the effectiveness of strictly protected areas that prohibit consumptive resource use. For Tanzania we compared temporal changes in densities of large herbivores among heavily protected national parks and game reserves, partially protected game-controlled areas, and areas with little or no protection. Comparisons based on surveys conducted in the late 1980s and early 1990s versus the late 1990s and early 2000s showed three consistent patterns across the country. First, significant declines in the densities of large herbivores between these two snapshots in time overwhelmingly outnumbered significant increases in all protection categories. Second, more species fared well (increased significantly or showed no significant change) in strictly protected national parks than in areas with partial or no protection and in heavily protected game reserves relative to areas with no protection. Third, significantly more species fared poorly (densities declined or were too low to detect a decline) than fared well in areas with partial or no protection. Our results show that although heavy protection was generally more effective in maintaining large herbivore populations than partial or no protection, continued long-term monitoring is needed in Tanzania to inform managers whether large herbivores are experiencing declining population trends even within heavily protected areas .  相似文献   
4.
Use of Substitute Species in Conservation Biology   总被引:2,自引:0,他引:2  
Abstract:  In conservation biology, researchers often want to study the reasons why an endangered population is faring poorly but are unable to study it directly for logistical or political reasons. Instead they study a species that substitutes for the one of concern in the hope that it will cast light on the conservation problem. Here we outline the assumptions underlying this approach. Substitutes can be different populations or species and may be chosen because they are similar biologically to the target or representatives of a constellation of species of which the target is one. They also may be used to develop a predictive model to which the conservation target can be related. For substitutes to be appropriate, they should share the same key ecological or behavioral traits that make the target sensitive to environmental disturbance and the relationship between population vital rates and level of disturbance should match that of the target. These conditions are unlikely to pertain in most circumstances and the use of substitute species to predict endangered populations' responses to disturbance is questionable.  相似文献   
5.
Correctly classifying a species as extinct or extant is of critical importance if current rates of biodiversity loss are to be accurately quantified. Observing an extinction event is rare, so in many cases extinction status is inferred using methods based on the analysis of records of historic sighting events. The accuracy of such methods is difficult to test. However, results of recent experiments with microcosm communities suggest that the rate at which a population declines to extinction, potentially driven by varying environmental conditions, may alter one's ability accurately to infer extinction status. We tested how the rate of population decline, driven by historic environmental change, alters the accuracy of 6 commonly applied sighting‐based methods used to infer extinction. We used data from small‐scale experimental communities and recorded wild population extirpations. We assessed how accuracy of the different methods was affected by rate of population decline, search effort, and number of sighting events recorded. Rate of population decline and historic population size of the species affected the accuracy of inferred extinction dates; however, faster declines produced more accurate inferred dates of extinction, but only when population sizes were higher. Optimal linear estimation (OLE) offered the most reliable and robust estimates, though no single method performed best in all situations, and it may be appropriate to use a different method if information regarding historic search efforts is available. OLE provided the most accurate estimates of extinction when the number of sighting events used was >10, and future use of this method should take this into account. Data from experimental populations provide added insight into testing techniques to discern wild extirpation events. Care should be taken designing such experiments so that they mirror closely the abundance dynamics of populations affected by real‐world extirpation events. Efectos del Cambio Ambiental Reciente sobre la Precisión de las Inferencias sobre el Estado de Extinción  相似文献   
6.
Abstract: Integrating knowledge from across the natural and social sciences is necessary to effectively address societal tradeoffs between human use of biological diversity and its preservation. Collaborative processes can change the ways decision makers think about scientific evidence, enhance levels of mutual trust and credibility, and advance the conservation policy discourse. Canada has responsibility for a large fraction of some major ecosystems, such as boreal forests, Arctic tundra, wetlands, and temperate and Arctic oceans. Stressors to biological diversity within these ecosystems arise from activities of the country's resource‐based economy, as well as external drivers of environmental change. Effective management is complicated by incongruence between ecological and political boundaries and conflicting perspectives on social and economic goals. Many knowledge gaps about stressors and their management might be reduced through targeted, timely research. We identify 40 questions that, if addressed or answered, would advance research that has a high probability of supporting development of effective policies and management strategies for species, ecosystems, and ecological processes in Canada. A total of 396 candidate questions drawn from natural and social science disciplines were contributed by individuals with diverse organizational affiliations. These were collaboratively winnowed to 40 by our team of collaborators. The questions emphasize understanding ecosystems, the effects and mitigation of climate change, coordinating governance and management efforts across multiple jurisdictions, and examining relations between conservation policy and the social and economic well‐being of Aboriginal peoples. The questions we identified provide potential links between evidence from the conservation sciences and formulation of policies for conservation and resource management. Our collaborative process of communication and engagement between scientists and decision makers for generating and prioritizing research questions at a national level could be a model for similar efforts beyond Canada.  相似文献   
7.
8.
9.
10.
Abstract: During the last 30 years, changes in the size of Hawaiian monk seal populations at several locations have been associated with the amount and type of human disturbance. Recreational beach activities caused monk seals to alter their pupping and hauling patterns. Survival of pups in suboptimal habitats was low, leading to gradual population declines. During the last decade at Kure Atoll, the process has been reversed human disturbance on beaches has decreased and traditional pupping and hauling sites have been reestablished Subsequently, high survival rates of young seals, coupled with two successful enhancement programs for female pups, have led to dramatic changes in the age and sex composition of the population. Based on these changes, the monk seal population at Kure Atoll soon should begin to increase. Apparently small behavioral changes in such vital activities as feeding and reproduction can have large demographic consequences. Therefore, monitoring of endangered species should include data on habitat use and age and sex composition, as well as estimates of abundance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号