首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为了探究棉秆在水蒸气气化过程中气化温度和蒸气与生物质的质量配比(S/B)对产气和焦油的影响,在自主搭建的流化床气化炉实验台上,进行了一系列实验。研究表明,氢气含量、气化效率、焦油去除量均与气化温度及S/B呈正相关,且焦油中甲苯、苯乙烯和苯酚等组分受气化条件影响显著。当气化温度为800℃时,实验中可得含氢量34%的中热值气体,并且焦油含量低于20g/m^3。  相似文献   

2.
在简要说明生物质与煤共燃意义的基础上,对低温热解生物质和煤共燃的污染性能和经济性能进行了研究和评价.认为低温热解生物质(锯屑、谷壳和花生壳)与煤共燃能够减排CO2、CH4等温室气体及NOX和SO2等大气污染物,减排重金属污染物和其它微量有毒有害元素;同时,二者共燃可以在运输成本、存储成本、电厂生物质处理费用、设备改造费用和节约煤炭等方面降低电厂的运营成本,但也可能在生物质低温热解产品加工上提高生产费用以及在因燃用热解生物质可能造成的积灰结渣上提高设备维护费用.可以预见,生物质与煤共燃的研究将是实现能源可持续发展的有效措施之一.  相似文献   

3.
环己酮焦油的综合利用   总被引:2,自引:0,他引:2  
郭正 《化工环保》1997,17(4):215-217
通过分析环己酮焦油的组成,提出了以它的原料采用催化氧化法生产己二酸的工艺路线,确定工艺条件。产品己二酸的收率可达到65%-72%,残渣可用作锅炉燃料。  相似文献   

4.
酚焦油资源化技术研究(Ⅱ)--裂解产物的分离   总被引:2,自引:0,他引:2  
开发出一种精馏与钠盐法相结合的分离酚焦油裂解产物的新工艺,裂解产物经精馏,蒸出异丙苯等轻组分、苯酚馏分和共沸物。共沸物中加入氢氧化钠,分离出酚钠盐和苯乙酮。轻组分和酚钠盐均返回苯酚、丙酮生产装置。裂解产物中有用物质的收率为92.91%,苯乙酮的收率为82.38%,其纯度大于98%。  相似文献   

5.
<正>Energy,2014,75(10):127废弃物混合物的热共处理在过去的10年里得到了很多关注。这主要是由于某些协同效应,如石油产量的增大和质量的改善、某些原料供应的短缺以及整个热解工艺的改进。为了在生物质和塑料废弃物的共热解中实现上述的协同效应,通过热解重量分析(TGA)和不同的反应器进行了许多实验。塑料在热解过程中的热性能不同于生物质,因为它的分解发生在高温范围,可迅速地释放挥发物质,相比而言生物质的热分解温度范围更  相似文献   

6.
唐占忠 《化工环保》1994,14(6):340-343,331
由己二腈加氢生产尼龙66中间己二胺的过程中,副产大量重组分焦油,可用于制备环氧树脂固化剂,印染助剂,造纸助剂,原油处理剂,絮凝剂,沥青胶改进剂,沥青乳化剂,阻垢剂,表面活性剂及胶粘剂等多种精细化工产品,本文对有关产品的制备及性能进行了阐述。  相似文献   

7.
苯乙烯蒸馏残焦油中粗品苯乙烯的回收工艺   总被引:1,自引:0,他引:1  
利用苯乙烯能与某些特定溶剂及水形成三元共沸物的特点,开发出从苯乙烯蒸馏塔釜排放的残焦油中提取粗品苯乙烯的新工艺。苯乙烯回收率可达92%以上,粗品苯乙烯的含量在98%(质量分数)以上。  相似文献   

8.
通过对国内外燃煤锅炉脱砷现状的研究,探讨各种脱砷方法的优、缺点,提出锅炉脱砷的可行方案。把砷污染的产生与锅炉运行实际结合起来考虑,脱砷过程可以分为燃烧前、燃烧中、燃烧后三段。燃烧前脱砷对于无机砷可以达到70%以上的效率,而对有机砷则会产生富集作用;燃烧中脱砷可利用现有的脱硫技术和设备,如炉内喷钙技术和循环流化床锅炉,其脱除效率分别达到40%、80%;燃烧后脱砷方法主要包括提高除尘器效率法、化学法、吸收剂法,这些方法基本都能使除砷效率理论值达到90%以上,具有极佳的工业应用前景。  相似文献   

9.
新然 《化工环保》2005,25(1):76-77
日本Tsukuba大学材料科学学院的研究人员正在开发一种生物体低温有效气化催化剂。产生的无焦油气体可用于生产电能,也可作为合成气生产甲醇、二甲醚或液体燃料。  相似文献   

10.
酚焦油资源化技术研究(Ⅰ)--先初馏再催化裂解   总被引:1,自引:0,他引:1  
开发出一种将酚焦油先初馏再催化裂解的回收处理新工艺及LZ—1型催化剂。在初馏温度为340—360℃、真空度为0.07—0.09MPa的条件下,初馏液体产品的平均收率为86.67%;在催化裂解温度为320—340℃,LZ—1型催化剂的加入比为2.5%—3.0%、裂解时间为3—4h的条件下,催化裂解产物的平均收率为90.96%。  相似文献   

11.
Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level.To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.  相似文献   

12.
Tar balls are frequently reported as an indicator of the extent of the impact of a spill incident. The determination of the density of tar balls is basic to the shoreline cleanup assessment team (SCAT) process, and is frequently used by the media as an indication of oil pollution. The processes involved in the evolution of tar balls are not well understood and there is a paucity of literature on the science of tar ball formation.  相似文献   

13.
Earlier research has identified the Chartherm process (Thermya, France) as a candidate for the best available technology to treat chromated copper arsenate (CCA) impregnated wood waste. This paper presents the working principle, the characteristics and the current state-of-knowledge related to the process, illustrating clearly the differences with pyrolysis and carbonisation processes. To emphasise the specific nature of the process, it has been given its own name ‘chartherisation’. The avoidance of tar and dioxin release, the role of the solid matrix in the metal behaviour and the separation process are described. Furthermore, the possible benefits of working at elevated pressure are discussed, based on the experience with charcoal production from coal and biomass. This paper shows that more fundamental research is needed to understand and model all mechanisms contributing to the characteristic nature of chartherisation, in order to control the dynamic behaviour and tune the operating conditions in the reactor on the quality of the products requested.  相似文献   

14.
Gasification experiments for sawdust were conducted using a fixed bed reactor at 900 °C by varying the secondary oxidant injection ratio to determine the optimal conditions for tar removal along with the enhancement of gasification efficiency. Secondary oxidant was injected as an oxidant at the top zone of the gasifier in varying ratios of 10–30% of the total amount of oxidant. This method was based on the primary method of tar removal and gasification efficiency improvement by thermal cracking of tar. Various gasification performance parameters were evaluated and tar content was estimated by measuring the fluctuation of weight of the activated carbon filter. The results showed that the concentration of tar in the producer gas decreased by injecting the secondary oxidant, even though syngas yield decreased. The recycling potential of the char produced in the gasification experiments was also assessed with the purpose of utilizing char as an adsorbent by determining its surface area and pore volume. The results demonstrated that the char produced from the gasification experiment had similar quality to that of the activated carbon used in this experiment.  相似文献   

15.
利用热解及钙盐沉淀法对农药含钾废渣进行处理,制得高纯度的KCl.通过管式炉反应器对农药含钾废渣中有机物的去除进行了研究,探讨了升温速率、热解终温、终温保持时间及空气流量对热解过程的影响,并对钙盐沉淀法除氟过程的溶液pH及m(Ca2+)∶m(F-)进行了确定.实验结果表明:当升温速率为20℃/min、热解终温为600℃、终温保持时间为90 min、空气流量为3.0m3/min时,废渣中的有机物完全分解;钙盐沉淀法除氟的最佳条件为溶液pH 8,m(Ca2+)∶m(F-)=3.0,氟离子的去除率达到98%;最终得到KCl的产率为70.6%,产品纯度为98.2%,符合国家Ⅰ级优等品标准.  相似文献   

16.
Journal of Material Cycles and Waste Management - The tar formed within the producer gas is a major problem in the biomass gasification process. The catalytic cracking of tar is the best method to...  相似文献   

17.
Fungicidal value of wood tar from pyrolysis of treated wood   总被引:1,自引:0,他引:1  
The objective of the paper was to estimate the fungicidal value of wood tar extracted as a product of pyrolysis of wood previously treated with either creosote oil or CCB-type salt preservative. The effectiveness of wood treated with one of these two wood tar residuals was compared to the effectiveness of wood treated with virgin creosote oil (type WEI-B) and an untreated control. Wood was impregnated with alcohol solutions of the two extracted preservatives or virgin creosote oil and then subjected to the Coniophora puteana, Poria placenta and Coriolus versicolor fungi. The fungicidal values of the investigated preservatives were determined with the use of the short agar-block method and the aging test according to the standard EN 84. It was found that wood tar extracted by pyrolysis of old creosote-treated wood and then used to treat wood may have potential as a preservative for wood protection or as a component of preservatives.  相似文献   

18.
Biomass is recognized as an important solution to energy and the environmental problems related to fossil fuel usage. The rational utilization of biomass waste is important not only for the prevention of environmental issues, but also for the effective utilization of natural resources. Pyrolysis and hyrolysis in subcritical water are promising processes for biomass waste conversion. This paper deals with hydrolysis and pyrolysis of peanut shells. Hydrolysis and pyrolysis kinetics of peanut shell wastes were investigated for the in-depth exploration of process mechanisms and for the control of the reactions. Hydrolysis kinetics was conducted in a temperature range of 180–240 °C. A simplified kinetic model to describe the hydrolysis of peanut shells was proposed. Hydrolysis activation energy as well as the pre-exponential factor was determined according to the model. The target products of peanut shell hydrolysis, reducing sugars, can reach up to 40.5 % (maximum yield) at 220 °C and 180 s. Pyrolysis characteristics were investigated. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent pyrolysis activation energy and pre-exponential factor were obtained by the Coats–Redfern method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号