首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to monitor the influent and effluent water quality of the aeration, facultative and oxidation water treatment ponds of an industrial estate. This industrial estate, the largest in northern Thailand, has proposed to utilization of reclaimed treated wastewater in their raw water supply so as to cope with the yearly water shortage during the dry season. Water samples were collected four times from four sampling points and evaluated for their dissolved organic matter (DOM) content in terms of dissolved organic carbon (DOC), ultraviolet light absorbance at 254 nm (UV-254), specific ultraviolet absorption (SUVA), trihalomethane formation potential (THMFP) and trihalomethane (THM) species. Average values of DOC, UV-254, SUVA and THMFP in the influent wastewater of 12.9 mg L−1, 0.165 cm−1, 1.29 L mg−1m−1 and 1.24 mg L−1, respectively, were observed. The aeration ponds produced the best results: a 54% reduction of DOC, a 33% reduction of UV-254, and a 57% reduction of THMFP. However, SUVA in the aeration pond effluent showed a moderate increase. The facultative ponds and oxidation ponds did not take part in the reduction of DOC, UV-254, SUVA and THMFP. Average DOC, UV-254, SUVA and THMFP value of the treated wastewater were 5.8 mg L−1, 0.107 cm−1, 1.85 L mg−1m−1 and 468 μg L−1, respectively. Chloroform, at 72.6% of total THMFP, was found to be the predominant THM species.  相似文献   

2.
Regression and correlation analyses were used to predict responses of phytoplankton biomass (chlorophyll) (μg L−1) to nitrate (NO3) (mg L−1), phosphate (PO4) (mg L−1) and ammonium (NH4) (mg L−1) dynamics in the shallow hypertrophic Lake Manyas, Turkey. Nutrient concentrations showed a descending gradient with distance, while chlorophyll concentrations showed an ascending gradient with the distance from the Sığırcı Inlet to the Karadere Outlet. Higher nutrient concentrations did always not coincide with higher chlorophyll concentrations. The results showed that regression models developed using seasonal data were more accurate in predicting chlorophyll concentrations than those developed using the pooled data from whole year (based on R 2 and the difference between the measured and predicted values). The findings also revealed that within a single large shallow lake, chlorophyll-nutrient relationships might show significant variations spatially. The objective of this study was to determine the seasonal and spatial variations in the relationships between chlorophyll, nitrate, phosphate and ammonium in the shallow hypertrophic Lake Manyas, Turkey.  相似文献   

3.
Total selenium (Se) and water-soluble Se in soil, and Se in a shallow groundwater were hydrogeochemically researched in an alluvial fan area in Tsukui, Central Japan. The water-soluble Se was estimated at average level of 2.6 ± 1.2μg Se kg−1 dry soil (± SD, n = 25), showing less than 1% of the total Se (349–508μg Se kg−1 dry soil) in soil. The monthly Se concentration in groundwater was average 2.2μg,L−1, ranging 1.6–2.4μg,L−1 during 2001–2003. The Se in groundwater significantly decreased with increasing groundwater level after rainfall. This result indicated that Se-bearing water percolated with relatively low Se concentration through the soil layer. According to our prediction model of linear regression curve on the observation data, Se concentration in the groundwater was estimated to be increasing with the very low rate of 4.35 × 10−3μg Se L−1,yr−1. The hydrogeochemical research and the result of the prediction model showed that any explosive increase of Se will hardly occur in this groundwater without an anthropogenic Se contamination.  相似文献   

4.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

5.
Conventional blanket application of nitrogen (N) fertilizer results in more loss of N from soil system and emission of nitrous oxide, a greenhouse gas (GHG). The leaf color chart (LCC) can be used for real-time N management and synchronizing N application with crop demand to reduce GHG emission. A 1-year study was carried out to evaluate the impact of conventional and LCC-based urea application on emission of nitrous oxide, methane, and carbon dioxide in a rice–wheat system of the Indo-Gangetic Plains of India. Treatments consisted of LCC scores of ≤4 and 5 for rice and wheat and were compared with conventional fixed-time N splitting schedule. The LCC-based urea application reduced nitrous oxide emission in rice and wheat. Application of 120 kg N per hectare at LCC ≤ 4 decreased nitrous oxide emission by 16% and methane by 11% over the conventional split application of urea in rice. However, application of N at LCC ≤ 5 increased nitrous oxide emission by 11% over the LCC ≤ 4 treatment in rice. Wheat reduction of nitrous oxide at LCC ≤ 4 was 18% as compared to the conventional method. Application of LCC-based N did not affect carbon dioxide emission from soil in rice and wheat. The global warming potential (GWP) were 12,395 and 13,692 kg CO2 ha−1 in LCC ≤ 4 and conventional urea application, respectively. Total carbon fixed in conventional urea application in rice–wheat system was 4.89 Mg C ha−1 and it increased to 5.54 Mg C ha−1 in LCC-based urea application (LCC ≤ 4). The study showed that LCC-based urea application can reduce GWP of a rice–wheat system by 10.5%.  相似文献   

6.
To assess the potential for treated wastewater irrigation to impact levels of fecal indicator bacteria (FIB) and salinity in irrigated soils, levels of Escherichia coli, Enterococcus, and environmental covariates were measured in a treated wastewater holding pond (irrigation source water), water leaving the irrigation system, and in irrigated soils over 2 years in a municipal parkland in Arizona. Higher E. coli levels were measured in the pond in winter (56 CFU 100 mL−1) than in summer (17 CFU 100 mL−1); however, in the irrigation system, levels of FIB decreased from summer (26 CFU 100 mL−1) to winter (4 CFU 100 mL−1), possibly related to low winter water use and corresponding death of residual bacteria within the system. For over 2 years, no increase in FIB was found in irrigated soils, though highest E. coli levels (700 CFU g−1 soil) were measured in deeper (20–25 cm) soils during summer. Measurements of water inputs vs. potential evapotranspiration indicate that irrigation levels may have been sufficient to generate bacterial percolation to deeper soil layers during summer. No overall increase in soil salinity resulting from treated wastewater irrigation was detected, but distinct seasonal peaks as high as 4 ds m−1 occurred during both summers. The peaks significantly declined in winter when surface ET abated and more favorable water balances could be maintained. Monitoring of seasonal shifts in irrigation water quality and/or factors correlated with increases and decreases in FIB will aid in identification of any public health or environmental risks that could arise from the use of treated wastewater for irrigation.  相似文献   

7.
The HOBAS aeration system was tested to compare changes in environmental and bacteriological parameters in ponds growing Penaeus monodon during a single production cycle. The stocking density in the aerated pond was doubled to 12 post-larvae (PL) m???2 in contrast to the non-aerated pond with 6 (PL) m???2. Microbial abundance in the ponds ranged between 105???6 cells ml???1. Among the physiological groups of bacteria enumerated, the heterotrophs dominated with an abundance of 104 CFU ml???1. Of the nitrogen and sulfur cycle bacteria, the nitrifiers flourished in the aerated pond and could maintain ammonia-N concentration within permissible levels. Bacterial activity also maintained sulfide concentrations at <?0.03 mg l???1. Non-aerated conditions promoted denitrification maintaining nitrate concentration between 0.32 and 0.98 μM NO3 ???-N l???1. However, a marked increase in ammonium content was observed in the non-aerated pond at the end of the culture period. Thus in high-density ponds, the aerators served to stimulate bacterial growth and activity which consequently maintained the quality of the water to match that of low-density ponds. Accordingly, these aerators could be effectively used to sustain higher yields. The effluent from the aerated pond is less likely to alter the redox balance of the receiving waters.  相似文献   

8.
The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)avg(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)avg(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)avg(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3–16 Mg salt/ha⋅ year and 23–195 kg NO)3 -N/ha⋅ year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE’s also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (≥14 Mg/ha⋅ year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.  相似文献   

9.
The investigation was carried out on a small pond situated on a recent mine spoil at Bolesław in the Olkusz region with Zn–Pb ore deposits. Water of the pond had pH 7.2–8.5 and low concentrations of heavy metals. Concentrations of Pb (487 μg g − 1) and Zn (1,991 μg g − 1) in the sediment were very high and potentially could lead to toxicological effects. In the pond, 48 taxa of macroinvertebrates belonging to Oligochaeta and water stages of Ephemeroptera, Odonata, Megaloptera, Trichoptera, Heteroptera, Coleoptera and Diptera (mainly Chironomidae family) were found. The influence of heavy metals on macroinvertebrates diversity was not found. Effect of heavy metal pollution was observed on the appearance of chromosome aberrations in the polytene chromosomes of Chironomidae larvae. It was manifested by two ways: (1) in Kiefferulus tendipediformis and Chironomus sp. chromosome rearrangements in fixed state (tandem fusion and homozygous inversions), indicated intensive process of speciation; (2) in Chironomus sp., K. tendipediformis, Glyptotendipes gripekoveni (Chironomidae) somatic chromosome rearrangements (inversions, deficiencies, specific puffs, polyploidy) affected few cells of every individual. The somatic functional and structural alterations in Chironomidae species are particular suitable as biomarkers—they can be easily identified and used for detecting toxic agents in the environment.  相似文献   

10.
Molasses-based distilleries generate large quantities of effluent, which is used for irrigation in many countries including India. The effluent is rich in organic and inorganic ions, which may leach down and pollute the groundwater. An on-farm experiment was conducted to assess the impact of long-term irrigation with post-methanation distillery effluent (PMDE) on nitrate, sulphate, chloride, sodium, potassium, and magnesium contents in the groundwater of two sites in northwest India. Electrical conductivity (EC), pH, total dissolved solids (TDS), sodium adsorption ratio (SAR) and colour were also determined to assess the chemical load in the groundwater. Nitrate content in the groundwater samples ranged from 16.95 mg L−1 in the unamended fields to 59.81 mg L−1 in the PMDE-amended fields during the 2-year study (2001–2002). Concentrations of TDS in water samples from tubewell of the amended field was higher by 40.4% over the tubewell water of the unamended field. Colour of the water samples of the amended fields was also darker than that of the unamended fields. The study indicated that the organic and inorganic ions added through the effluent could pose a serious threat to the groundwater quality if applied without proper monitoring.  相似文献   

11.
Elevated levels of selenium have been found in water and aquatic biota downstream from two open-pit coal mines in the Rocky Mountain foothills of Alberta. Birds are particularly sensitive to excessive dietary selenium. However, there is relatively little information on selenium accumulation in birds' eggs on fast-flowing mountain streams. We determined levels of selenium in water samples, caddisfly larvae and eggs of American dippers (Cinclus mexicanus) nesting on the Gregg River, downstream from the mines, and on reference streams in the same general vicinity. Selenium levels (mean, 95% confidence limits) in water samples and caddisflies collected from sites near dipper nests on the Gregg River (water: 4.26, 1.90–9.56 μg L−1; caddisflies: 8.43, 7.51–9.46 μg g dry wt−1) were greater than those collected from sites near nests on reference rivers (water: 0.38, 0.21–0.71 μg L−1; caddisflies: 4.65, 4.35–4.97 μg g dry wt−1). The mean (± 1SE) selenium level in dipper eggs from the Gregg River (6.3 ± 0.2 μg g−1 dry wt) was significantly higher than it was in eggs from reference streams (4.9 ± 0.2 μg g−1 dry wt). Concentrations of selenium in eggs were significantly correlated with those in water samples (r = 0.45). The maximum selenium level in eggs from the Gregg River (9.0 μg g−1) may have been high enough to warrant concern from an ecotoxicological perspective. The American dipper can serve as a useful bioindicator of selenium contamination in mountainous, lotic ecosystems.  相似文献   

12.
An experiment was conducted to assess the role of different concentrations of dicyandiamide (DCD), a potent nitrification inhibitor, on temporal changes in nitrous oxide emission from sandy loam agricultural soil. It was found that with increasing concentration of DCD i.e. from 6 to 12% of nitrogen applied in the form of urea, there was a decrease in the both average and peak N2O emissions. However, from 14% DCD treated soil, there was a non-significant alteration in the N2O emission. Maximum average N2O efflux of 217.55 μg m−2 h−1 was noted from control plots. As compared to control, there was an attenuation of 50, 58, 65, and 91% average N2O efflux from 6, 8, 10 and 12% DCD applied pots, respectively, whereas, there was a negative average of N2O efflux from the soil with 14% DCD treatment. The soil N content also showed a significant correlation with N2O emission. Therefore, 12% DCD treatment has been found to be the best with regard to attenuation of nitrous oxide from sandy loam agricultural soils.  相似文献   

13.
Temporal and spatial variations in particulate organic carbon (POC) in relation to primary production, chlorophyll a, phaeophytin, plankton abundance, secondary production and suspended particulate matter (SPM) were studied monthly for 1 year from April 1996 to March 1997 in a shallow tropical coastal lagoon on the southwest coast of India. Though temporal variations in all components were significant, spatial variabilities were not statistically significant. POC values range from 200 to 5690 mg C m3 h−1, while primary production, chlorophyll a, and phaeophytin varied between 0.02 and 14.53 mg C m−3 h−1, 0.87 and 23.11 mg m−3 and 3.02 and 30.581 mg m−3, respectively. Phytoplankton and zooplankton abundance varied from 0.01 to 655.5×105 no m−3 and negligible to 7.08×105 no m−3 respectively; secondary production from 10 to 490 mg C m−3 and SPM between 0.38 and 74.43×104 mg m−3 during this study. Temporally, postmonsoon months were observed to have the highest concentrations of POC in the lagoon waters. The bulk of the POC pool in the lagoon was composed of secondary producers (72%), followed by chlorophyll a (21%), phaeophytin (7%) and suspended particulate matter of inorganic origin (< 0.1%).  相似文献   

14.
To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO42−·Cl—Na+ while chemical types in the inland plain were SO42−·Cl—Ca2+·Mg2+ and HCO3—Ca2+·Mg2+.  相似文献   

15.
A performance study of diffusive gradients in thin films (DGT) and inductively coupled plasma optical emission spectrometry (ICP-OES) was applied for the monitoring of the labile fraction of metals Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn, in Sant Joan Despí Drinking Water Treatment Plant located in the South of Barcelona’s Metropolitan Area (Spain). The DWTP monitoring protocol was optimized by working for 1 day of deployment (24 h) with the DGT device in contact with both treated and river water matrixes. Additionally, it was demonstrated that an increase in the deployment time of 1 week did not decrease the evaluated concentrations of the studied metals. The quality parameters of the DGT device and ICP-OES determination, such as limit of quantification, accuracy expressed as relative error (%) and reproducibility expressed as relative standard deviation, were evaluated. Good results were obtained for all the metals in ultrapure water; limits of quantification ranged from 1.5 μg L − 1 for cadmium to 28 μg L − 1 for zinc when deployment time of 24 h was used and from 0.2 μg L − 1 for cadmium to 4 μg L − 1 for zinc when this time was increased by 1 week. Accuracy and precisions lower than or equal to 10% were obtained at a parametric concentration value of the metals regulated in the European Drinking Water Guidelines (98/83/EC). DGT deployment was tested in river and treated water, and good results were obtained for Cd, Ni, Co and Zn, whereas for the other metals, a continuous control of their metallic labile fractions was monitored. Therefore, DGT device allows the continuous monitoring of the labile metal species in a drinking water treatment plant.  相似文献   

16.
The hydrochemical characterization of groundwater is important to bring out its nature and usefulness. The main objective of this paper was to discuss the major ion chemistry of groundwater in the Mambakkam mini watershed. Besides its semi-arid nature, rapid socioeconomic development encourages a greater demand for water, which leads to uncontrolled groundwater development. The groundwater of the study area is characterized by the dominance of alkaline earth (Ca2+, Mg2+) and strong acids (Cl, SO4) over alkalies (Na+, K+) and weak acids (HCO3, CO3) during both post-monsoon and pre-monsoon seasons of the year 2010, based on the hydrochemical facies. These have been probably derived from natural chemical weathering of rock minerals, ion exchange and anthropogenic activities of the fertilizer source. The classification based on the total hardness reveals that a majority of groundwater samples fall in the hard to very hard category during the pre-monsoon season. Based on the values of EC, SAR and RSC and the diagrams of USSL and Wilcox, most of the groundwater samples range from excellent to permissible for irrigation purposes, with a low alkalinity and high salinity hazard, except for a few samples in the study area.  相似文献   

17.
Abstact Aboveground biomass, aboveground litterfall, and leaf litter decomposition of five indigenous tree stands (pure stands ofPinus brutia,Pinus nigra,Cedrus libani,Juniperus excelsa, and a mixed stand ofAbies cilicica,P. nigra, andC. libani) were measured in an eastern Mediterranean evergreen needleleaf forest of Turkey. Measurements were converted to regional scale estimates of carbon (C) stocks and fluxes of forest ecosystems, based on general non-site-specific allometric relationships. Mean C stock of the conifer forests was estimated as 97.8± 79 Mg C ha−1consisting of 83.0 ± 67 Mg C ha−1in the aboveground and 14.8 ± 12 Mg C ha−1in the belowground biomass. The forest stands had mean soil organic carbon (SOC) and nitrogen (SON) stocks of 172.0 ± 25.7 Mg C ha−1and 9.2 ± 1.2 Mg N ha−1, respectively. Mean total monthly litterfall was 376.2± 191.3 kg C ha−1, ranging from 641 ± 385 kg C ha−1forPinus brutiato 286 ± 82 kg C ha−1forCedrus libani. Decomposition rate constants (k) for pine needles were 0.0016 forCedrus libani, 0.0009 forPinus nigra, 0.0006 for the mixed stand, and 0.0005 day−1forPinus brutiaand Juniperus excelsa. Estimation of components of the C budgets revealed that the forest ecosystems were net C sinks, with a mean sequestration rate of 2.0 ± 1.1 Mg C ha−1 yr−1ranging from 3.2 ± 2 Mg C ha−1forPinus brutiato 1.6 ± 0.6 Mg C ha−1forCedrus libani. Mean net ecosystem productivity (NEP) resulted in sequestration of 98.4 ± 54.1 Gg CO2 yr−1from the atmosphere when extrapolated for the entire study area of 134.2 km2(Gg = 109 g). The quantitative C data from the study revealed the significance of the conifer Mediterranean forests as C sinks  相似文献   

18.
The southwestern coast of India is drained by many small rivers with lengths less than 250 km and catchment areas less than 6,500 km2. These rivers are perennial and are also the major drinking water sources in the region. But, the fast pace of urbanization, industrialization, fertilizer intensive agricultural activities and rise in pilgrim tourism in the past four to five decades have imposed marked changes in water quality and solute fluxes of many of these rivers. The problems have aggravated further due to leaching of ionic constituents from the organic-rich (peaty) impervious sub-surface layers that are exposed due to channel incision resulting from indiscriminate instream mining for construction-grade sand and gravel. In this context, an attempt has been made here to evaluate the water quality and the net nutrient flux of one of the important rivers in the southwestern coast of India, the Manimala river which has a length of about 90 km and catchment area of 847 km2. The river exhibits seasonal variation in most of the water quality parameters (pH, electrical conductivity, dissolved oxygen, total dissolved solids, Ca, Mg, Na, K, Fe, HCO3, NO2-N, NO3-N, P \text-inorg_{\rm \text{-}inorg}, P \text-tot_{\rm \text{-}tot}, chloride, SO4, and SiO2). Except for NO3-N and SiO2, all the other parameters are generally enriched in non-monsoon (December–May) samples than that of monsoon (June–November). The flux estimation reveals that the Manimala river transports an amount of 2,308 t y − 1 of dissolved inorganic nitrogen, 87 t y − 1 dissolved inorganic phosphorus, and 9246 t y − 1 of SO4, and 1984 t y − 1 K into the receiving coastal waters. These together constitute about 23% of the total dissolved fluxes transported by the Manimala river. Based on the study, a set of mitigation measures are also suggested to improve the overall water quality of small catchment rivers of the densely populated tropics in general and the south western coast in particular.  相似文献   

19.
In an effort to assess current and future water quality of the only perennial river in southeastern Botswana, this study presents water quality monitoring and modeling results for the effluent-dependent Notwane River. The water quality along the Notwane River, pre- and post-implementation of secondary wastewater treatment, was compared and results demonstrated that water quality improved after the new wastewater treatment plant (WWTP) went online. However, stream standards for chemical oxygen demand, total dissolved phosphorous, and fecal coliform were exceeded in most locations and the critical dissolved oxygen (DO) reached concentrations of less than 4 mg L−1. High dissolved P concentrations and intense macrophyte growth at the impounding ponds and at sites within 30 km of the effluent waste stream confluence suggest that eutrophication was a function of P release from the ponds. Results of DO modeling demonstrated that an unpolluted inflow at approximately 10 km downstream of the confluence was responsible for raising DO concentrations by 2.3 mg L−1, while SOD was responsible for a decline in DO concentrations of 1.4 mg L−1 at 6 km downstream of the confluence. Simulations also showed higher DO concentrations during winter months, when water temperatures were lower. Simulations, in which the distributed biochemical oxygen demand (BOD) loading from cattle excrement was decreased, produced nominal increases in DO concentrations. An increase in WWTP BOD loadings to projected 2020 values resulted in a 1.3 mg L−1 decrease in the critical DO concentration. Furthermore, a decrease in treatment plant efficiency, from 94% to 70% BOD removal, produced critical DO concentrations and anoxia along much of the modeled reach. This has significant implications for Gaborone, especially if decreased WWTP efficiency occurs as a result of the expected future increase in pollutant loadings.  相似文献   

20.
Plants of Eichhornia crassipes grown at various levels of cadmium ranging from 0.1 to 100 μg ml−1 accumulated Cd in a concentration and duration dependent manner. At all levels, Cd accumulation by various plant tissues followed the order roots shoot leaves. Approximately 80% of total Cd was accumulated by plant at highest concentration (100 μg ml−1) used in the experiment. Cadmium induced phytotoxicity appears at 25.0 μg ml−1 resulting into reduced levels of chlorophyll, protein and in vivo nitrate reductase activity of the plant. However, a slight induction of these physiological variables was obtained at lowest Cd (0.1 μg ml−1) concentration. In contrast, carotenoid content increased at highest Cd concentration i.e., 100 μg ml−1. Similar effects at low and high levels of Cd was obtained with respect to mitotic index and micronuclei in root meristem of the plant. It could be inferred that Cd toxicity in plant is differential depending upon the low and high concentration of Cd in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号