首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
采用锰铜测压实验测定了强约束及弱约束条件下 ,不同装药直径的传爆药HMX/F2 64 1的爆压 ,实验混合炸药密度为 90 %的理论密度 ,研究的装药直径范围为 1.5~ 5 .0mm ,初步揭示出传爆序列小型化装药尺寸对传爆药传爆可靠性的影响。研究结果对传爆序列小型化装药尺寸的确定及其传爆可靠性的评价 ,具有重要的参考价值  相似文献   

2.
为获得性能更佳的钝感传爆药,以奥克托今(HMX)原料为基础,采用溶剂-非溶剂重结晶技术,并辅以超声喷雾工艺制备细化HMX,同时,通过试验方法制备以丙烯酸酯橡胶(ACM)、F2602和Viton A等3种材料为黏结剂的包覆HMX,并分别测试分析其安全性.结果表明:经过细化后,HMX的热稳定性和热敏感性降低,而撞击安定性则...  相似文献   

3.
HMX粒度、粒度级配对混合传爆药性能影响的研究   总被引:8,自引:0,他引:8  
通过喷射方法把主体炸药 HMX重结晶后 ,将其制成粗细不同的几种粒度药粉 ,并按粗细不同比例进行级配 ,随后采用 SSGT和爆速测试 ,研究了不同粒度及粒度级配对其混合传爆药冲击波感度和爆速的影响规律 ,并对其结果进行了理论分析。由于实验条件的限制 ,还不能达到按要求控制条件以细化出要求的各种粒径 ,所以实验所选的几种级配粒度是随机的 ,因而具有代表性。  相似文献   

4.
为了适应钝感弹药发展的需求,利用冲击波汇聚技术和起爆理论,研究了环形、锥环形两种新型传爆药装药结构。试验表明,环形传爆药较圆柱形传爆药可减少药量约15% ,锥环形传爆药较圆柱形传爆药可减少药量约26% 。研究结果对于减少武器爆炸序列中敏感元件——传爆药的使用数量,进而提高武器系统使用安全性具有重要意义  相似文献   

5.
炸药添加剂对改善单质炸药安全与能量特性有重要作用。为研究纳米微颗粒石墨烯(Gr)对黑索今(RDX)热性能、机械感度及爆轰性能的影响,设计不同比例含量的Gr/RDX混合药剂配方,并对其进行差热、撞击感度、摩擦感度、爆速及钢凹深度的测试分析。结果表明:与纯RDX相比,Gr/RDX混合药剂DSC(差示扫描量热)曲线分解峰宽变窄、峰形更尖锐,Gr加速RDX的放热过程;Gr/RDX混合药剂撞击感度与摩擦感度随Gr比例含量的增加呈先降低后升高的趋势,少量Gr可使RDX变得钝感,含量增加时,敏化作用逐渐表现出来;Gr/RDX混合药剂爆速与钢凹深度随Gr比例含量的增加而降低;Gr含量为1%时可显著降低RDX的机械感度,而能量基本不衰减。Gr可作为RDX功能添加剂,在确保能量输出的同时,可降低机械感度、提高安全性。  相似文献   

6.
周西华      王原      李昂      陈猛     《中国安全生产科学技术》2017,13(11):123-128
为研究自制隔爆水幕抑制瓦斯爆炸的有效性,采用大直径瓦斯爆炸试验管道系统,在不同瓦斯浓度和不同水幕流量条件下进行瓦斯爆炸试验,利用数据采集系统测量瓦斯爆炸特性参数并对其变化规律和隔爆效果进行分析。结果表明:瓦斯浓度9.5%时经过隔爆水幕抑制作用,瓦斯爆炸压力峰值由64 kPa下降到39 kPa,衰减了39%;温度峰值由969 K下降到498 K,衰减了49%;速度最大值由136 m/s下降到73 m/s,衰减了15%。虽然隔爆水幕对不同浓度瓦斯产生的爆炸起到良好的抑制效果,但隔爆之后的传播规律依然受到瓦斯浓度影响。隔爆水幕对瓦斯爆炸的抑制效果取决于喷水流量的大小,随着流量的增加,水幕的隔爆效果增强,喷头最佳的工作流量为16.4 L/min。  相似文献   

7.
HMX的氟橡胶包覆技术及其撞击感度研究   总被引:2,自引:0,他引:2  
采用超临界流体SAS法,以氟橡胶(FPM2602)为钝化包覆剂,对主体炸药超细奥克托今(HMX)的粒子表面均匀包覆,制备出超细HMX为基传爆药。对系统温度、系统压力、溶液浓度等参数进行实验研究,用红外光谱(FT-IR)和扫描电镜(SEM)对包覆后超细HMX进行了表征,并对其撞击感度进行了测试。结果表明:溶液浓度是影响包覆效果的最主要因素;当系统温度45℃,系统压力9.5MPa,溶液浓度为0.4g/ml,通气时间为20min条件下,氟橡胶均匀包覆在超细HMX颗粒表面,包覆后颗粒呈0.4-1μm球状,包覆后造型粉特性落高H50为38.50cm(12型工具、2.5kg落锤),撞击感度比原料(H50为26.30cm)明显降低。  相似文献   

8.
PBXN-5传爆药安全可靠性试验方法研究   总被引:1,自引:0,他引:1  
为满足引信传爆序列对高可靠性、高安全性火工药剂的需求,通过小隔板试验及升降法试验对PBXN-5传爆药的输出能力和冲击波感度作了分析和研究,小样本试验发现:当施主药柱装药相同,随施主与受主间隔板厚度增加,可靠起爆概率明显降低;但随受主药柱的装药尺寸的减小,传爆概率却增大。总之,受主药柱直径越小,隔板越薄,使用可靠性越高,结合安全使用性,计算得到合适的可靠度数据,为微型火工品装药提供参数依据。  相似文献   

9.
旨在研究一种新型高能传爆药装药结构,根据冲击波汇聚技术、拐角效应理论和有效装药理论等,设计了一种异形结构传爆药。利用主装药轴向钢凹法对多点同步起爆网络起爆的该异形结构传爆药柱起爆威力进行了实验研究。对实验数据进行对比分析,结果表明在达到相同起爆效果的情况下,利用多点同步起爆网络起爆的该异形结构传爆药柱相对于普通圆柱形传爆药柱的用药量有较大幅度的降低。研究成果对解决钝感弹药的起爆问题具有重大的现实意义。  相似文献   

10.
在洗煤厂的干燥系统中极易发生煤粉燃烧爆炸事故,为了减轻爆炸危害,对干燥系统进行泄爆设计尤其重要。应用20 L粉尘爆炸特性测试系统,对某洗煤厂煤样煤尘云爆炸性参数进行测试,得出最大爆炸压力0.74 MPa,最大爆炸压力上升速率为58.5 MPa/s,计算出最大爆炸指数为15.88 MPa/(m·s)。根据测试结果计算出洗煤厂干燥系统干燥器、除尘器及冷却器泄爆面积分别为5.15,0.68,0.62 m~2。并结合现场实际环境对泄爆装置及泄爆口位置进行分析设计。  相似文献   

11.
In order to obtain a better understanding of the non-ideal detonation behaviour of ammonium nitrate based explosives, detonation velocities of ANFO (ammonium nitrate and fuel oil) prepared with different kinds of ammonium nitrate (AN) were measured in steel tubes. In this series of test six kinds of AN were used and the influence of the pore diameter, the pore volume and the particle diameter of the AN particle on the detonation velocity of ANFO was investigated.

It was found that the pore diameter and the pore volume had a strong influence on the detonation velocities of ANFO. In the case of ANFO samples which were prepared with AN that had the same pore diameter and the pore volume, when tested the highest detonation velocity (3.85 km/s) was observed when the smallest particle diameter (<0.85 mm) was used. This value corresponded to 75% of the ideal detonation velocity, which was theoretically predicted by the CHEETAH code with the JCZ3-EOS.

The 12 months aging showed the change of the detonation velocities of ANFO and the reaction of ANFO was influenced both by the physical and the chemical properties of AN particles and oil during the storage period.  相似文献   


12.
The methane–air detonation experiments are performed to characterize high pressure explosion processes that may occur in sealed areas of underground coal mines. The detonation tube used for these studies is 73 m long, 105 cm internal diameter, and closed at one end. The test gas is 97.5% methane with about 1.5% ethane, and the methane–air test mixtures varied between 4% and 19% methane by volume. Detonations were successfully initiated for mixtures containing between 5.3% and 15.5% methane. The detonations propagated with an average velocity between 1512 and 1863 m/s. Average overpressures recorded behind the first shock pressure peak varied between 1.2 and 1.7 MPa. The measured detonation velocities and pressures are close to their corresponding theoretical Chapman-Jouguet (CJ) detonation velocity (DCJ) and detonation pressure (PCJ). Outside of these detonability limits, failed detonations produced decaying detached shocks and flames propagating with velocities of approximately 1/2 DCJ. Cell patterns on smokefoils during detonations were very irregular and showed secondary cell structures inside primary cells. The measured width of primary cells varied between 20 cm near the stoichiometry and 105 cm (tube diameter) near the limits. The largest detonation cell (105 cm wide and 170 cm long) was recorded for the mixture containing 15.3% methane.  相似文献   

13.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure.  相似文献   

14.
To better understand the detonation characteristics of ammonium nitrate (AN) and activated carbon (AC) mixtures, steel tube tests were carried out for AN/AC mixtures of various compositions and different forms of AN (powdered, prilled, phase stabilized and granular), and the detonation velocity was measured. The powdered AN/AC mixtures gave higher detonation velocities than the other AN forms. For all the AN/AC mixtures, the experimentally observed detonation velocities at each loading density were far below the theoretically predicted values calculated by the CHEETAH code based on thermohydrodynamics, exhibiting so-called non-ideal detonation. The lowest detonation velocity of powdered AN/AC mixtures was obtained as D=1.25 km/s for an AC content of 0.1 wt%. This was considered to be close to the critical condition for stable detonation.  相似文献   

15.
为研究隧道坡度对射流风机临界风速的影响,通过理论分析与数值模拟,采用全尺寸隧道模型和5种不同火源功率,考虑0%,±1%,±3%,±5%,±7% 9种不同隧道坡度,研究隧道坡度对射流风机临界风速的影响规律。结果表明:坡度对射流风机临界风速有较大影响。在射流风机与火源纵向间距不小于100 m情况下,即其临界风速与火源纵向间距无关;当上坡时,其临界风速与火源功率的1/3次方成正比,坡度越大,临界风速越小;当下坡时,其临界风速与火源功率的1/3次方成正比,坡度(绝对值)越大,临界风速越大;对数据结果进行拟合,得到上坡与下坡时的射流风机临界风速模型,并与模拟结果取得了较好的一致性。  相似文献   

16.
Decomposing detonation and deflagration properties of ozone/oxygen mixtures   总被引:2,自引:0,他引:2  
In this study, the decomposing detonation and deflagration properties of ozone/oxygen mixtures of up to 20 vol.% of ozone in oxygen under high pressure of up to 1.0 MPa in a tube were experimentally investigated. The mixtures were ignited by an electric spark at the end of the tube. Flame propagation properties such as flame velocity and pressure were measured with thermocouples and piezo electric transducers mounted along the tube. Slow and constant flame propagation profiles were obtained. We also investigated the quenching ability of a wire gauze as well as the concentration limit for flame propagation. However, in spite of slow flame propagation velocity and easy flame quenching properties under these experimental conditions, direct initiation of detonation by the driver detonation of the stoichiometric oxy-hydrogen mixture was easily achieved at much lower concentrations than the limit of deflagration. The observed detonation properties, such as wave velocity and pressure, agreed fairly well with CJ calculated values. The detonation velocity (900–1200 m/s) and the pressure ratio to initial pressures (5–9.5) were not affected by the initial pressure of the mixtures. Near the detonation limit, typical spinning detonations with oscillatory pressure waves were observed.  相似文献   

17.
Experiments with hydrogen–air and ethylene–air mixtures at atmospheric pressure were carried out in a 6.1 m long, 0.1 m diameter tube with different obstacle configurations and ignition types. Classical DDT experiments were performed with the first part of the tube filled with equally spaced 75 mm (44% area blockage ratio) orifice-plates. The DDT limits, defining the so-called quasi-detonation regime, where the wave propagates at a velocity above the speed of sound in the products, were found to be well correlated with d/λ = 1, where d is orifice-plate diameter and λ is the detonation cell size. The only exception was the rich ethylene limit where d/λ = 1.9 was found. In a second experiment detonation propagation limits were measured by transmitting a CJ detonation wave into an obstacle filled (same equally spaced 44% orifice plates) section of the tube. An oxy-acetylene driver promptly initiated a detonation wave at one end. In this experiment the quasi-detonation propagation limits were found to agree very well with the d/λ = 1 correlation. This indicates that the d/λ = 1 represents a propagation limit. In general, one can conclude that the classical DDT limits measured in an orifice-plate filled tube are governed by the wave propagation mechanism, independent of detonation initiation (DDT process) that can occur locally in the obstacles outside these limits. For rich mixtures, transmission of the quasi-detonation into the smooth tube resulted in CJ detonation wave. However, in a narrow range of mixtures on the lean side, the detonation failed to transmit in the smooth tube. This highlights the critical role that shock reflection plays in the propagation of quasi-detonation waves.  相似文献   

18.
For the explosion safety assessment in industrial setting, detonation dynamic parameters provide important information on the sensitivity and conditions whereby detonations can be favorably occurred. In this study, new measurement of the critical tube diameter and the critical energy for direct initiation of a detonation is reported for a number of hydrocarbon–oxygen mixtures. The simultaneous experimental measurement carried out in this work allows the investigation of the direct scaling between these two dynamic parameter quantities of gaseous detonations. Using the new set of data, this paper also assesses the validity of an existing semi-empirical initiation model, namely, the surface energy model by Lee, and a simplified work done model. Both phenomenological models provide a general relationship between the two dynamic detonation parameters and comparison shows a good agreement between the theoretical results and the experimental measurement. The scaling of critical tube diameter with detonation cell size in this study also confirms the results in the previous literature.  相似文献   

19.
This paper presents results of an experimental investigation on the deflagration and deflagration-to-detonation transition (DDT) in an obstructed (blockage ratio BR = 50%), semi-confined flat layer filled with uniform hydrogen–air mixtures. The effect of mixture reactivity depending on flat layer thickness and its width is studied to evaluate the critical conditions for sonic flame propagation and the possibility for detonation onset. The experiments were performed in a transparent, rectangular channel with a length of 2.5 m. The flat layer thickness was varied from 0.06 to 0.24 m and the experiments were performed for different channel widths of 0.3, 0.6 and 0.9 m. The experimental results show flame velocity vs. hydrogen concentration for different thicknesses and widths of the semi-confined flat layer. Three different flame propagation regimes were observed: slow subsonic flame (M << 1), sonic deflagration (M ~ 1) and detonation (M >> 1). It is shown that flame acceleration (FA) to sonic speed is independent of the width of the flat layer. The critical expansion ratio for effective flame acceleration to sonic speed was found to be linearly dependent on the reciprocal layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号