首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 439 毫秒
1.
微波-改性活性炭-Fenton试剂氧化法降解水中2,4-二氯酚   总被引:7,自引:2,他引:5  
以经Fe2(SO4)3溶液浸渍改性的活性炭作催化剂、Fenton试剂作氧化剂,采用微波-改性活性炭-Fenton试剂氧化法降解水中的2,4-二氯酚。考察了改性活性炭加入量、H2O2与Fe^2+摩尔比、Fenton试剂加入量、微波功率和2,4-二氯酚溶液初始pH对2,4-二氯酚降解效果的影响。在改性活性炭加入量1.0g/L、n(H2O2):n(Fe^2+)=16.7(H2O2加入量6.0mmol/L、Fe^2+加入量0.36mmol/L)、Fenton试剂加入量为6.36mmol/L、微波功率600W、微波辐射时间10min、2,4-二氯酚溶液初始pH为6.0的条件下,2,4-二氯酚降解率和TOC去除率分别可达98.7%和84.0%。  相似文献   

2.
采用Fenton氧化法对吸附处理染料废水后的饱和粉末活性炭(饱和炭)进行再生,考察了饱和炭的再生效果及其主要影响因素。实验结果表明:饱和炭的最佳再生条件为H2O2投加量6.5 mmol/g、再生p H 3.0、H2O2与Fe2+的摩尔比10、再生时间1 h;最佳条件下的再生率(再生粉末活性炭(再生炭)与新粉末活性炭对废水COD去除率的百分比)约为60%;使用最佳再生条件下得到的再生炭对废水进行吸附处理,废水的COD去除率和脱色率分别约为27%和67%。  相似文献   

3.
采用Fenton试剂氧化—曝气生物滤池组合工艺对某制药厂常规生化处理后的废水进行深度处理.实验结果表明,Fenton试剂氧化的适宜操作条件为pH=5,ρ(H2O2)∶COD=1.5、n(H2O2)∶n(Fe2+)=2,反应时间为60min.经氧化处理后的废水再进入曝气生物滤池进行生化处理,最终出水COD小于80 mg/L,色度小于10倍,处理效果良好.  相似文献   

4.
分别用溶剂和气体对脱除SO2后失活的活性炭进行了再生。在固定床反应器上考察了再生后活性炭的脱硫性能。实验结果表明:用溶剂再生时,质量分数为60%的HNO3溶液的再生效果最好,活性炭的再生率达到80%以上。用气体再生时,400℃左右时的再生效果最好,活性炭的再生率达到70%以上。再生后活性炭的比表面积和pH是衡量活性炭再生效果的重要参数。在实际脱硫生产中,用H2O对失活活性炭进行反复洗涤再生,是一种经济、实用的方法,活性炭的再生率达60%以上。  相似文献   

5.
研究了微波再生泥质活性炭的最佳条件及各影响因素对饱和泥质活性炭再生性能的影响。以城市污水处理厂污泥为原料制备泥质活性炭,以亚甲基蓝为模拟污染物污染泥质活性炭,探索了辅助溶液浓度、微波功率、辐照时间及泥质活性炭质量对再生性能的影响规律。结果表明,2 g饱和泥质活性炭在碱液浓度为30 g.L-1,微波功率为300 W,辐照时间为90 s时,性能恢复率最高,再生损耗率最小。碱液辅助微波再生泥质活性炭是一种可行的泥质活性炭再生方法。  相似文献   

6.
分别采用UV-Fenton试剂氧化法、次氯酸钙氧化法和二氧化氯氧化法处理模拟聚合物驱废水,考察了各工艺条件对废水降黏效果的影响。实验结果表明:在初始废水pH为7、反应温度为50℃、反应时间为20 min的条件下,UV-Fenton试剂氧化法适宜的H2O2加入量为1 mmol/L,n(H2O2)∶n(Fe2+)=10,处理后废水降黏率达65.7%;次氯酸钙氧化法适宜的次氯酸钙加入量为500 mg/L,处理后废水降黏率达81.7%;二氧化氯氧化法适宜的二氧化氯加入量为100 mg/L,处理后废水降黏率为40.9%。3种氧化法对模拟聚合物驱废水的降黏率大小顺序为:次氯酸钙氧化法>UV-Fenton试剂氧化法>二氧化氯氧化法。  相似文献   

7.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

8.
介孔TiO2纤维的制备及其光催化性能   总被引:2,自引:1,他引:2  
包南  张锋  马志会  刘鑫  孙剑  刘峰 《化工环保》2007,27(3):204-208
采用溶胶-凝胶和水蒸气活化热处理技术制备了介孔TiO2纤维,考察了各种因素对介孔TiO2纤维光催化活性的影响,并对介孔TiO2纤维结构进行了表征。介孔TiO2纤维的最佳制备条件:n(TBOT)∶n(C6H10O3)∶n(H2O)∶n(C3H8O)=1∶0.4∶2.0∶16,搅拌时间80min,Si与Ti的摩尔比为0.15,采用分段程序升温工艺,活化温度为700℃。所得介孔TiO2纤维比表面积为127.7m2/g,最可几孔径为7.3nm,具有极高的热稳定性及抗晶型转变能力,反应时间75min时活性艳红X-3B降解率为99.3%。  相似文献   

9.
微波催化氧化法处理甲基橙废水   总被引:27,自引:1,他引:26  
采用微波催化氧化法处理模拟甲基橙废水,考察了微波功率、辐射时间、H2O2用量、活性炭用量对甲基橙去除率的影响。在微波功率630w、辐射时间9min、H2O2用量10mL/L,活性炭用量10g/L的条件下,甲基橙的去除率达到90%左右,并对实际染料废水、炼焦废水、炼油废水、餐饮废水进行了处理,取得了满意的结果。  相似文献   

10.
以H3PO4为活化剂制备甘蔗叶活性炭,采用正交实验对活性炭的制备工艺进行了优化,并研究了活性炭对含铬废水的吸附和再生性能.实验结果表明:在H3PO4体积分数为15%、H2SO4体积分数为6%、HC1体积分数为3%、活化温度为723 K、活化时间为0.58 h的工艺条件下,活性炭得率为35.07%,碘吸附值为1 207 mg/g.活性炭对Cr(Ⅵ)的最大平衡吸附量为30.89 mg/g,HNO3再生后对Cr(Ⅵ)的最大平衡吸附量为39.48 mg/g;再生效率最高达87.41%,经3次再生,活性炭的再生效率仍能维持在80%以上.  相似文献   

11.
范广裕 《化工环保》1996,16(3):156-161
以球形活性炭为吸附剂,用吸附法处理黑索金(RDX)废水,出水能够达到国家排放标准,球形活性炭的动态饱和吸附量为0.123-0.140g/g,吸附带长为2m。吸附饱和的球形活性炭,可用碱液以复再生。笔者还提出了数学模型,导出了处理实验数据公式,此公式可推广应用于同类吸附实验数据处理。  相似文献   

12.
双介质阻挡放电法再生吸附五氯酚的活性炭   总被引:1,自引:1,他引:0  
汪星星  李杰  鲁娜  吴彦 《化工环保》2011,(2):97-100
采用双介质阻挡放电等离子体反应器对吸附了五氯酚的活性炭进行放电再生处理,考察了放电电压、放电时间、氧气流量和活性炭再生次数对再生活性炭的五氯酚去除率的影响.实验结果表明,活性炭再生的最佳条件为:放电电压23 kV,放电时间1.5h,氧气流量2.0 L/min.随活性炭再生次数增加,再生活性炭的五氯酚去除率和活性炭再生率...  相似文献   

13.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

14.
以2,4-二硝基甲苯为吸附物,对吸附饱和的活性炭进行电化学再生,考察了再生时间、电流密度、体系pH、电解质NaCl质量浓度等对再生效果的影响。最佳的电化学再生工艺条件为电解质NaCl质量浓度15.0 g/L,电流密度20 mA/cm~2,体系pH为 5,再生时间2 h,在此条件下活性炭再生率可达102.57%。再生前后活性炭的微孔结构基本不变,微孔孔径分布于0.3~1.0 nm。再生后活性炭的比表面积增大,石墨化程度提高,表面含氧基团含量增加,总氧含量增加,碳含量有所下降。  相似文献   

15.
超临界二氧化碳萃取再生吸苯活性炭的研究   总被引:10,自引:0,他引:10  
以工业废水中的典型污染物苯作为单一吸附质,进行了超临界二氧化碳萃取再生活性炭研究,探讨了操作温度、操作压力、CO2流速、活性炭粒度、循环再生次数等因素对再生效率及再生速率的影响。试验结果表明,超临界CO2对活性炭中的苯具有良好的再生效果。  相似文献   

16.
采用Fenton试剂氧化—SBR工艺处理阿莫西林制药废水生化处理出水。实验结果表明:当初始废水pH为3.0、H2O2加入量为10 mL/L、V(H2O2):m(FeSO4.7H2O)为5(mL):1(g)、Fenton试剂氧化反应时间为3 h时,Fenton试剂氧化COD去除率达72.25%,色度由100倍降为2倍,BOD5/COD由0.06提高到0.38,可生化性显著提高。经Fenton试剂氧化—SBR工艺处理后,出水COD为72.7 mg/L,达到国家排放标准。  相似文献   

17.
建筑涂料生产废水的处理技术   总被引:3,自引:0,他引:3  
采用混凝沉淀-芬顿试剂催化氧化-活性炭吸附工艺对建筑涂料生产废水的处理进行了研究。用硫酸铝作混凝剂,投加量为500mg/L:芬顿试剂法处理的废水pH为6.0,H2O2/COD值为4.0,FeSO4投加量为1540mg/L,氧化反应时间大于4h;活性炭投加量为0.2g/L时,处理后出水COD小于100mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号