首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
防护服装的全面评价通常涉及安全性、工效学特性等多个方面。在常用高、低温防护服隔热性能研究基础上,对服装的舒适性进行了初步研究,以期为高低温防护服的选用和设计改进等提供依据。本研究应用热平板仪、人工气候室等研究设备以及真人着装实验,对高低温作业典型工种常用的耐高温防护服和低温防护服的舒适性能进行了研究。研究结果显示,不同类型高、低温防护服的透气性、透湿性、着装压力、肢体活动角度等均表现出一定差异,防护服的面料、结构和工艺等均影响到其整体舒适性,并提出了相应的改善建议。  相似文献   

2.
为评价常用类型高、低温防护服的防护性能,本研究应用热平板仪、人工气候室和暖体假人等研究设备,对高低温作业典型工种常用的耐高温防护服和低温防护服的隔热性能进行了研究。研究结果显示,不同类型高、低温防护服的服装面料、服装整体的隔热性表现出一定差异,模拟环境下的着装生理学测试结果也存在不同,防护服的面料、结构和工艺等均影响到其整体隔热性能。防护服装的全面评价通常涉及安全性、工效学特性等多个方面,有必要从服装的舒适性、工效学特性等方面进一步研究,并开展大规模的现场人体穿着实验,从而为高低温防护服的选用和设计改进等提供依据。  相似文献   

3.
服装热阻和湿阻的测量与计算   总被引:1,自引:0,他引:1  
热阻和湿阻是影响服装热湿舒适性的两个重要参数,其测量方法对于研究和改善服装的热湿舒适性具有重要意义。本文介绍了面料和服装的热阻、湿阻的概念和测量方法,以一件连体型防静电无尘服为例,使用出汗暖体假人"Newton",对其热阻、湿阻进行测量,详细阐述了服装的局部到整体的热阻、湿阻的测量与计算,并分析了服装各个局部热阻、湿阻的特点。  相似文献   

4.
A numerical model of heat and moisture transport in thermal protective clothing during exposure to a flash fire was introduced. The model was developed with the assumption that textiles are treated as porous media. The numerical model predictions were compared with experimental data from different fabric systems and configurations. Additionally, with the introduction of a skin model, the parameters that affect the performance of thermal protective clothing were investigated.  相似文献   

5.
为提高消防服的热湿舒适性能,减少消防员在灭火救援过程中的热应激反应,基于现有消防服用织物材料的物性参数和单项热湿舒适性指标,采用多元回归分析的方法综合评价消防服各层材料的热湿舒适性能,研究各外层材料的单项热湿舒适性指标与物性参数之间的关系。结果表明:以黑色芳砜伦为外层材料、Goretex为防水透气层材料、Nomex针刺毡为隔热层材料、Nomex/FR-VISCOSE(50%Nomex,50%阻燃黏胶)为舒适层材料的消防服热湿舒适性最好,并得出织物的吸湿速率常数、透湿率和干燥率与物性参数之间的显著多元回归模型。  相似文献   

6.
为量化环境条件对消防服热舒适性能的影响,选取我国02式消防服,测量其在不同环境温度、湿度及风速条件下的热阻和湿阻并得出拟合公式;通过回归分析法分析环境条件对热阻和湿阻的影响,提出其对热阻和湿阻影响的数学模型。结果表明:风速对热阻和湿阻的影响较大,而环境温度和湿度对热阻及湿阻的影响较少;风速与整体热阻及整体湿阻呈负相关,而风速与固有热阻和固有湿阻呈正相关。该研究可为消防服热舒适性能测试及高性能防护装备研发提供理论指导。  相似文献   

7.
The purpose of this study was to determine the usefulness of physiological studies in the evaluation of protective clothing for work in a cold environment. The study included the examination of the dynamics of changes in chosen physiological parameters (core and skin temperatures, heart rate, pulmonary minute ventilation) as well as physical ones (the temperature and relative humidity under the clothes) during work in protective clothing with unknown thermal insulation. The experiment was conducted in extreme environmental conditions (–10 and –15°C) at a work load defined by the clothing manufacturer as moderate. Results show that thermal equilibrium was achieved and maintained throughout the investigated work time (60 min) and that the protective clothing ensures safety on the time scale of a regular 8-hour work day. It was also shown that the dynamics of thermal stress physiological parameters can be used to determine the maximum duration of exposure for cold protective clothing with unknown thermal insulation.  相似文献   

8.
针对电力行业电弧引发的事故,电弧防护服相关标准开始制定并逐步完善。现有电弧防护性能的标准测试方法包括开弧测试和盒式测试,针对不同形式的电弧,测试方式仍在不断发展。电弧防护性能的最常用的衡量指标是电弧热性能值ATPV。对于不同工作场所电弧服的选择是基于对工作现场的危害评级。最后文章总结了电弧防护服性能影响因素的研究,包括电弧防护性、热湿舒适性和作业适应性。未来的电弧防护服的开发会朝向更安全、低成本、更舒适的方向进行。  相似文献   

9.
Cold protective clothing was studied in 2 European Union projects. The objectives were (a) to examine different insulation calculation methods as measured on a manikin (serial or parallel), for the prediction of cold stress (IREQ); (b) to consider the effects of cold protective clothing on metabolic rate; (c) to evaluate the movement and wind correction of clothing insulation values.

Tests were carried out on 8 subjects. The results showed the possibility of incorporating the effect of increases in metabolic rate values due to thick cold protective clothing into the IREQ model. Using the higher thermal insulation value from the serial method in the IREQ prediction, would lead to unacceptable cooling of the users. Thus, only the parallel insulation calculation method in EN 342:2004 should be used. The wind and motion correction equation (No. 2) gave realistic values for total resultant insulation; dynamic testing according to EN 342:2004 may be omitted.  相似文献   

10.
Cold protective clothing was studied in 2 European Union projects. The objectives were (a) to examine different insulation calculation methods as measured on a manikin (serial or parallel), for the prediction of cold stress (IREQ); (b) to consider the effects of cold protective clothing on metabolic rate; (c) to evaluate the movement and wind correction of clothing insulation values. Tests were carried out on 8 subjects. The results showed the possibility of incorporating the effect of increases in metabolic rate values due to thick cold protective clothing into the IREQ model. Using the higher thermal insulation value from the serial method in the IREQ prediction, would lead to unacceptable cooling of the users. Thus, only the parallel insulation calculation method in EN 342:2004 should be used. The wind and motion correction equation (No. 2) gave realistic values for total resultant insulation; dynamic testing according to EN 342:2004 may be omitted.  相似文献   

11.
The moisture from skin sweat and atmospheric water affects the thermal protective performance provided by multilayer protective clothing. Four levels of moisture content were selected to evaluate the impact of moisture on thermal protection under dry (thermal radiation) and wet (thermal radiation and low-pressure steam) heat exposure. Also, the role of moisture and its relationship with exposure time were analyzed based on skin heat flux and Henriques integral value. The addition of moisture to a fabric system was found to result in differences in second-degree and third-degree skin burn times. When moisture is added to a fabric system, it both acts as a thermal conductor to present a negative effect and provides a positive effect owing to thermal storage of water and evaporative heat loss. The positive or negative effects of moisture are mainly dependent on the thermal exposure time, the moisture content and the presence of hot steam.  相似文献   

12.
对现役消防服的隔热材质和使用性能,以及气凝胶作为新型纳米隔热材料在服装方面的应用现状进行了分析。根据初步对比讨论了SiO2气凝胶复合材料用于消防服的可行性,得出以下结论:在同样的热防护性能前提下,采用SiO2气凝胶复合材料可使消防服重量及厚度降低70%以上。  相似文献   

13.
Fire fighters are normally overprotected during their working hours because of the tendency to keep the personal protection level sufficiently high in case of the worst possible scenarios. This study investigated the effects of task-fitted protective clothing on thermal strain in fire fighters as compared to EN 469:2005 protective clothing during a prolonged (2 1/2 hrs) job-related rescue drill under neutral and hot climates. The subjects were 23 healthy, physically fit professional male fire fighters aged 26–44 years. Measurements included cardiovascular and thermal responses and subjective assessments. Wearing task-fitted clothing during rescue tasks in a neutral climate considerably reduced total thermal and cardiovascular strain in prolonged rescue work. The fire fighters also perceived physical work as significantly harder on average, and reported more intense subjective discomfort while wearing EN 469:2005 as compared to task-fitted clothing.  相似文献   

14.
Fire fighters are normally overprotected during their working hours because of the tendency to keep the personal protection level sufficiently high in case of the worst possible scenarios. This study investigated the effects of task-fitted protective clothing on thermal strain in fire fighters as compared to EN 469:2005 protective clothing during a prolonged (2 1/2 hrs) job-related rescue drill under neutral and hot climates. The subjects were 23 healthy, physically fit professional male fire fighters aged 26-44 years. Measurements included cardiovascular and thermal responses and subjective assessments. Wearing task-fitted clothing during rescue tasks in a neutral climate considerably reduced total thermal and cardiovascular strain in prolonged rescue work. The fire fighters also perceived physical work as significantly harder on average, and reported more intense subjective discomfort while wearing EN 469:2005 as compared to task-fitted clothing.  相似文献   

15.
The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments’ material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.  相似文献   

16.
为了研究淋雨及不同温度条件对消防员防护服各部位热阻的影响,以消防防护服为研究对象,利用环境舱和暖体假人系统,在20 mm/h降雨强度和20~30 ℃的复合环境条件下,研究淋雨、不同温度复合环境对服装各部位热阻的影响。研究结果表明:淋雨过程中,服装热阻的变化趋势为先上升再下降最后趋于稳定;淋雨与不同温度复合环境会使得消防防护服热阻降低,其中影响较大的部位为上臂部、腹部、胸部、背部及臀部等。  相似文献   

17.
本文通过对防弹衣的改进研究,探讨了利用经编间隔织物对防弹装备舒适性提高的可行性。用经编间隔织物代替传统防弹衣里料(平纹机织布),并制成成衣。通过红外热成像仪分别测试以经编间隔织物为里料的防弹衣的热湿传导性、透气散热性来探讨经编间隔织物对防弹衣的舒适性能的影响。实验结果表明:在相同测试条件下,以经编间隔织物为里料的防弹衣的热湿传导性能良好,透气散热性优于传统防弹衣1℃左右。因此经编间隔织物对提高防弹衣的舒适性能具有推动作用。本课题的研究意义在于为警用防弹衣的舒适性能提供理论参考,为警察或军队的作战能力提高做出更大的贡献。  相似文献   

18.
本文对劳动防护服的号型设置进行了分析与研究。《劳动防护服号型》是各类劳动防护服制作中广泛使用的基础性国家标准,依据当前劳动者人体尺寸的统计分析和企业劳动防护服生产供应实际情况,科学合理设置服装号型,以符合国家标准的科学性、实用性以及增强劳动防护服的舒适性功能。  相似文献   

19.
基于人体皮肤热模型的热防护服评价方法研究   总被引:1,自引:0,他引:1  
在热防护服热防护性能测试装置基础上,用自行研制的新型耐高温模拟皮肤传感器代替铜片热流计测量通过应急热防护服装面料的热流量,将热流量作为热波皮肤模型边界条件,得到人体皮肤表层下80μm处的温度值,从而得到一定条件下人体真实皮肤达到二级烧伤所需时间,用其评价热防护服用织物的热防护性能,并将热波皮肤模型(TWMBT)的测试值与Pennes模型以及铜片热流计的测试结果进行分析比较。采用热波皮肤模型分析织物层下的"皮肤"防热时间更接近实际皮肤达到二级烧伤时间值,可较为精确的量化织物热防护性能,为应急救援热防护服装的热设计提供理论依据。  相似文献   

20.
本文对不同隔热层材料组成的消防服的热防护性能进行了实验测试与分析验证,评价了新型组合式消防服和传统组合式消防服的隔热性能优劣。结果表明以SiO2气凝胶材料为隔热层的新型组合式消防服的导热系数约为传统型的1/4,具有更显著的热防护效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号