首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着水电开发的迅速兴起,河流筑坝拦截引起的生态环境效应已不容忽视。为探究筑坝拦截对流域内营养元素生物地球化学循环过程的影响,本研究于2016年1月和7月对嘉陵江中下游4座梯级水库的入库、库内及出库水体进行采样,分析了营养盐(TDN、NO_2~-、NO_3~-、NH_4~+、DSi)及水化学组成;研究在大坝拦截作用下,嘉陵江流域水库水体营养盐及主要阴、阳离子浓度的时空变化特征。结果发现,沿程Na~+、K~+浓度上升的变化趋势表明从上游到下游人为因素的影响在不断加强。受降水稀释影响,TDN和DSi浓度枯水期(冬季)高于丰水期(夏季);剖面水体氮和硅的浓度呈现出表层低、深层高的特征,夏季尤为显著;NO_3~-浓度与NH_4~+和NO_2~-浓度存在负相关关系。上述结果表明氮的转化在表层水体以藻类的吸收同化为主,浅层水体以硝化反应为主,深层水体以反硝化反应为主。  相似文献   

2.
河流梯级水坝建设不仅造成营养元素在水库累积,向下游的输送通量降低,而且由于对不同元素的不同拦截效率会影响到元素的计量关系,从而影响水库生态系统和水质变化。为了厘清水库对N、P的拦截效率,本研究于2013~2015年分三次对乌江流域七个大型梯级水库水体总氮(TN)和总磷(TP)浓度进行了采样分析,探讨了不同梯级水库中氮磷营养元素的分布及其滞留效率。结果发现,乌江流域各梯级水库中TN浓度从上游到下游有逐级降低的趋势,每一级水库拦截了2%~13%的氮。乌江流域梯级水库较低的生产力和较高的氧浓度使其对TP的拦截效率更高,但水库较低的TP浓度使得拦截效果容易受到外源P输入的抵消。水库对TN、TP的拦截效率差异导致水库N/P比值发生了明显变化,因而在流域管理控制N、P的方法选择上应充分考虑这一自然过程的影响。  相似文献   

3.
为揭示河流梯级开发对生源要素氮磷输运的影响,本研究选择乌江流域的普定、乌江渡、思林作为上、中、下游梯级水库的代表,于2020年8月采集各水库水体剖面和沉积物柱样品,测定氮磷含量,并用SMT法提取沉积物磷形态。结果发现,受中下游人为污染输入影响,乌江渡水库水体总氮浓度最高,为3.92±0.50mg/L,总磷浓度在此坝前到下游急剧抬升为上游的2~3倍,达到0.04~0.06mg/L;坝前沉积物含有大量的高释放风险的铁铝活性磷(1310.3±1003.3mg/kg),可能成为下游的潜在污染源。中下游水库较高的生物量加快了氮磷的活化速度,提高了活性磷的浓度,反而减低了沉积物有机磷的生物拦截效率。除乌江渡水库外,其它水库沉积物中以钙结合态磷为主(占无机磷的60%以上)。梯级水库修建后,泥沙含量大幅降低,可能是下游水库沉积物钙结合态磷浓度降低的主要因素。总体上,梯级水库的累积效应使得水库对生源要素的“活化”效率增强、“拦截”效应减弱,增大了富营养化发生的风险。  相似文献   

4.
受息烽河输入的影响,乌江渡水库的磷污染问题一直备受关注,但水库上游水体磷的释放以及河流筑坝对水库磷污染的影响却没有引起太多的重视。本文通过对表层沉积物和沉积物柱芯中磷及其形态的分析,研究乌江渡沉积物磷的污染现状和历史变化趋势及其对河流筑坝的响应。结果表明:1)乌江渡水库沉积物磷污染现已非常严重,远高于国内其他湖库;2)乌江渡沉积物磷含量从上游至下游有递增的趋势,且主要由NaOH-P的增加所致;3)乌江渡沉积物磷的空间变化可能源于不同粒径颗粒物或藻类的沿程沉降,也可能源于水体中Fe2+被氧化后引起磷的沿程沉降,但真实原因还需要进一步的证实。这说明上游水库滞留在沉积物中的磷部分可能重新释放出来,导致乌江渡水库中上游沉积物磷的污染也相当严重。  相似文献   

5.
梯级筑坝显著改变了河流碳的生物地球化学循环。为了了解梯级筑坝对河流HCO_3~-的影响,本文对乌江中上游梯级水库的HCO_3~-浓度、溶解无机碳同位素(δ~(13)CDIC)及相关的环境参数进行了长时间跨度的分析。乌江中上游梯级水库-河流体系HCO_3~-浓度为1 42154~3 38752μmol/L,平均值为2 36321μmol/L;δ~(13)CDIC为-1066‰~-452‰,平均值为-854‰;梯级筑坝导致河流具有下游HCO_3~-浓度升高的变化趋势。河流筑坝发电,易形成峡谷型深水水库。碳同位素证据和相关性分析表明,上层的光合作用和下层的呼吸作用成为控制发电水库碳循环的主要因素。这导致HCO_3~-浓度在水库剖面上呈现出由上层至下层逐渐增高的变化规律,再加上水库底层泄水的发电方式,最终导致梯级筑坝河流下游HCO_3~-浓度逐渐升高。本研究将加深梯级筑坝对河流碳循环影响机理的理解。  相似文献   

6.
对华南某金矿下游河道砷、镉分布特征进行了初步研究,在金矿下游河道沿程布设7个沉积物采样点及两个河道断面,分析了沉积物及断面土壤的砷、镉、铬、铜、镍、铅、锌含量。采用Tessier连续提取法分析沉积物中砷、镉等重金属的形态。砷含量高达10 20870 621 mg/kg,镉含量达2.870 621 mg/kg,镉含量达2.810.2 mg/kg。沉积物中砷、铅元素含量沿水流方向总体呈现减少趋势,铬、铜元素含量沿水流方向呈现增加趋势,镉元素含量沿水流方向先增加后减少。上游断面沉积物砷、镉等重金属浓度由河流中泓线向河岸方向增加,砷含量由16 617 mg/kg增加至53 197 mg/kg;下游断面则反之,砷含量由16 860 mg/kg减少至384mg/kg。沉积物中砷、镉等重金属元素主要以铁锰氧化态、有机结合态和残渣态的形式存在。  相似文献   

7.
于2007年7月(夏季)、10月(秋季)2次对猫跳河流域河流-水库水体样品进行了采集,分析其水化学组成特征,溶解无机碳(DIC)含量及其同位素组成,研究了猫跳河流域河流-水库的碳元素地球化学行为,目的是阐明梯级水库拦截后河流的碳元素含量和碳同位素(δ13CDIC)组成的分布特征.水体DIC及其同位素(1δ3CDIC)组成的总体特征为:DIC含量夏季低于秋季,夏季DIC含量为1.35~2.84 mmol/L,平均值为2.12 mmol/L,秋季DIC含量为2.03~3.98 mmol/L,平均值为2.67 mmol/L;1δ3CDIC值则相反,夏季较秋季偏正,其1δ3CDIC值流域夏季为-10.3‰~-5.1‰,平均值是-8.6‰,秋季为-13.0‰~-6.9‰,平均值为-9.0‰,表明夏季藻类光合作用优先富集12C,水体富集13C.夏季水库的DIC含量随着深度的加深而增大,而δ13CDIC值则随着深度的加深而偏负,表明表层水体受藻类生物作用影响较大,下层水体主要受有机质的降解影响.DIC含量从上游至下游呈逐渐降低的趋势,而δ13CDIC值从上游至下游呈逐渐偏负的趋势,表明河流受水坝拦截后河流水化学性质发生了改...  相似文献   

8.
水电站运行影响河流的栖息地环境,进而影响底栖动物群落结构,从而对河流生态健康造成影响.基于牡丹江镜泊湖电站至石岩电站江段的底栖动物采样数据,分析该江段的底栖动物沿程变化规律以及梯级水电站群对水生态环境的影响.结果表明,梯级电站的运行对研究江段的多种生境因子造成了影响,改变了江段内底栖动物的群落结构.在电站的上游和下游,底栖动物群落结构差别明显,其中,电站下游环境敏感种的数量多于上游.相比坝式水电站,引水式水电站对底栖动物的影响较小.空间上来看,电站运行影响沿程逐渐减弱,底栖动物的密度和丰度呈现沿程增加的趋势.  相似文献   

9.
杨乐  李贺鹏  孙滨峰  岳春雷 《环境科学》2017,38(12):5012-5019
新安江水库是我国华东地区最大的水库,面积580 km2,平均深度30 m,水库水体处于中贫营养状态.为了研究新安江水库中CO_2排放的时空变化特征,2014年12月至2015年12月采用静态浮箱法收集水库表面以分子扩散方式排放的CO_2,使用气相色谱仪分析CO_2浓度.结果表明,新安江水库CO_2排放通量从上游入库河流[(120.39±135.41)mg·(m~2·h)~(-1)]至库区主体[(36.65~61.94)mg·(m~2·h)~(-1)]呈下降趋势,而大坝下游河流中CO_2排放通量[(1 535.00±1 447.46)mg·(m~2·h)~(-1)]显著增加,约分别是上游入库河流和库区主体的13倍和25~42倍.但随着与大坝距离增加,大坝下游河流中CO_2排放通量显著下降,如7 km处的CO_2排放通量仅为出库水体处的20%.在库区主体中,CO_2排放通量具有明显的季节变化:CO_2排放通量在秋、冬季时为正值,最大值出现在冬季(12月或1月),说明此时库区表层水体是CO_2排放源;而CO_2排放通量在春、夏季为负值,最小值出现在春季(3、4或5月),说明此时库区表层水体是CO_2吸收汇,这可能与春、夏季时水体中藻类繁殖有关.所以,在调查水库表面CO_2排放时,应对水库的上游入库河流、库区主体和坝下河流进行全面长期的观测,才能避免低估水库中CO_2排放总量.  相似文献   

10.
为探究梯级水库运行对河流沉积物氮形态时空分布的影响,分别在枯水期和汛期对澜沧江和怒江沿程表层沉积物进行跟踪监测,并利用分级连续浸取分离法得到了离子可交换态氮(IEF-N),弱酸可浸取态氮(WAEF-N),强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)等四种沉积物氮形态.结果表明:(1)怒江和澜沧江自然河流段可转化态氮(TTN)含量略低于水库段,沿程分布含量范围512.2~1548.5mg/L,同时期4种可转化态氮形态分布规律基本一致,枯水期SOEF-N>WAEF-N>SAEF-N>IEF-N,含量范围分别为486.6~1424.8,3.3~83.1,1.4~88.8和1.2~10.7mg/kg;汛期WAEF-N>SOEF-N>SAEF-N>IEF-N,含量范围分别为360.7~755.7,42.8~656.2,6.8~394.3和35.8~153.6mg/kg;(2)梯级水库运行导致有机质富集,颗粒物粒径变小,对WAEF-N的释放有抑制作用;梯级水库运行导致水库段沉积物粒径变小,而SOEF-N主要分布在细颗粒中,致使沉积物的矿化作...  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

20.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号