首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
西安周边河流溶解无机碳浓度及同位素组成初探   总被引:4,自引:3,他引:1  
郭威  李祥忠  刘卫国 《环境科学》2013,34(4):1291-1297
通过分析西安周边4条主要河流(浐河、灞河、涝河、黑河)的溶解无机碳(DIC)浓度和碳同位素组成,初步探讨了西安周边主要河流溶解无机碳(DIC)的浓度变化及碳源.结果表明西安周边主要河流DIC浓度的变化范围为0.34~5.66mmol.L-1,平均为1.23 mmol.L-1,自源头到下游,DIC浓度呈现升高趋势.4条河流δ13CDIC值的变化范围在-13.3‰~-7.2‰之间,平均值约为-10.1‰,4条河流整体表现为δ13CDIC值在源头偏负(平均值约为-12.6‰),中下游农耕区δ13CDIC值偏正(平均值约为-9.4‰),靠近入渭河河口的城市区δ13CDIC表现为偏负值(平均值为-10.5‰).DIC浓度与河流DIC碳同位素组成的变化规律揭示了河流溶解无机碳来源的变化,土壤CO2的输入可能是源头水体DIC的主要来源;中下游农耕区河水δ13CDIC值偏正是由于农业区农作物存在C4植被(如:玉米),使得农业区土壤CO2和土壤碳酸盐具有偏正的碳同位素组成,进而导致河流水体具有偏正的δ13CDIC值;靠近河口处具有较低δ13C值,污水的大量输入可能导致河水δ13CDIC表现为偏负.结果表明西安周边河流溶解无机碳浓度和同位素组成变化大致指示了河流从源头到下游过程中DIC的可能来源,可为黄土高原小流域河流无机碳来源示踪研究提供参考.  相似文献   

2.
广西五里峡水库夏季溶解无机碳行为的初步研究   总被引:11,自引:7,他引:4  
刘文  蒲俊兵  于奭  章程  区绎如  袁道先  杨会  唐伟 《环境科学》2014,35(8):2959-2966
为更加清晰地认识无机碳在岩溶水库水体中的循环转化过程,2013年7月初对位于岩溶区的广西五里峡水库沿流程方向不同地点不同深度水体进行现场监测.结果表明:1研究区水体水化学主要受碳酸盐平衡体系控制,水化学类型为HCO3-Ca+Mg型.2水体溶解无机碳(dissolved inorganic carbon,DIC)含量及其同位素组成δ13CDIC分布特征:沿流程方向从库尾到坝前同一深度不同取样点DIC含量呈减小趋势(DIC(平均):1.03~0.78 mmol·L-1),δ13CDIC则逐渐变重(δ13CDIC(平均):-10.21‰~-6.62‰).沿垂直方向从表层向库底DIC含量呈增加趋势(DIC(平均):0.86~1.05 mmol·L-1),δ13CDIC则逐渐变轻(δ13CDIC(平均):-7.88‰~-13.39‰).分析认为:1碳酸盐岩溶解沉淀过程对研究区水体DIC含量及δ13CDIC的影响有限或被其它过程平抑.2研究区水体存在热分层现象,其通过影响水库不同部位、不同深度水生生物新陈代谢的方向及强度、有机质分解强度等对水体DIC及δ13CDIC产生影响,使之出现前述变化趋势.  相似文献   

3.
李丽  蒲俊兵  李建鸿  张陶 《环境科学》2017,38(2):527-534
岩溶水体中溶解无机碳(DIC)主要以HCO_3~-形式存在,其同位素(δ~(13)CDIC)被广泛用于示踪DIC的不同来源及其影响因素.为了解亚热带典型岩溶溪流溶解无机碳及其稳定同位素的分布规律,本文以广西柳州官村地下河补给的地表溪流为研究对象,对其水化学特征和δ~(13)CDIC进行分析.结果表明,溪流上游和下游的DIC与δ~(13)CDIC都表现出明显的时空变化特征,地下河出口(G1点)HCO_3~-旱季浓度变化范围为(4.73±0.14)mmol·L~(-1),而雨季为(4.23±0.68)mmol·L~(-1).溪流下游(G2点)HCO_3~-旱季浓度变化范围为(4.56±0.23)mmol·L~(-1),而雨季为(4.20±0.59)mmol·L~(-1).溪流上游的旱季δ~(13)CDIC变化范围为-12.22‰±0.49‰,雨季的变化范围为-12.28‰±0.82‰;溪流下游的旱季变化范围为-10.73±0.71‰,雨季的变化范围为-11.10‰±0.90‰.两个点水体DIC含量旱季均高于雨季,且G1点要高于下游G2点.两个点水体δ~(13)CDIC值旱季较雨季偏重,且G2点水体δ~(13)CDIC值显著高于G1点δ~(13)CDIC值.地下河水和溪流DIC主要来源于土壤CO2和碳酸盐岩溶蚀,但是溪流上游与下游DIC和δ~(13)CDIC值差异表明水体的CO2脱气作用,水生植物的光合作用显著影响了水体DIC和δ~(13)CDIC值.  相似文献   

4.
任坤  潘晓东  曾洁  焦友军  彭聪  梁嘉鹏 《环境科学》2019,40(10):4523-4531
通过分析贵州洪家渡盆地地下水水化学和溶解无机碳(dissolved inorganic carbon,DIC)同位素(δ13CDIC)季节变化特征,探讨岩溶区不同土地利用类型下影响地下水δ13CDIC特征的自然过程和人为因素.结果表明:洪家渡盆地地下水中DIC主要来源于碳酸盐岩风化和土壤CO2.地下水δ13CDIC值冬季为-14. 8‰~-4. 1‰,平均值-10. 1‰;夏季为-14. 5‰~-6. 3‰,平均值-10. 2‰.含煤地层中硫化物氧化和酸雨带来的H2SO4参与碳酸盐岩风化使地下水δ13CDIC值整体偏正.由于土壤CO2效应,人类活动干扰程度小的林地地下水δ13CDIC值夏季冬季.夏季农业活动施用的大量肥料产生的HNO3参与了碳酸盐岩风化,使耕地地下水δ13CDIC值夏季冬季.居住区人为输入的有机质降解对地下水DIC贡献较大,冬夏季δ13CDIC平均值分别-11. 9‰和-11. 6‰,季节差异较小.不同季节、不同土地利用类型下,人类活动方式不同导致地下水δ13CDIC值与水化学存在差异.因此,δ13CDIC可以反映人类活动对岩溶含水层的影响,具有良好的生态指示意义.  相似文献   

5.
梯级筑坝显著改变了河流碳的生物地球化学循环。为了了解梯级筑坝对河流HCO_3~-的影响,本文对乌江中上游梯级水库的HCO_3~-浓度、溶解无机碳同位素(δ~(13)CDIC)及相关的环境参数进行了长时间跨度的分析。乌江中上游梯级水库-河流体系HCO_3~-浓度为1 42154~3 38752μmol/L,平均值为2 36321μmol/L;δ~(13)CDIC为-1066‰~-452‰,平均值为-854‰;梯级筑坝导致河流具有下游HCO_3~-浓度升高的变化趋势。河流筑坝发电,易形成峡谷型深水水库。碳同位素证据和相关性分析表明,上层的光合作用和下层的呼吸作用成为控制发电水库碳循环的主要因素。这导致HCO_3~-浓度在水库剖面上呈现出由上层至下层逐渐增高的变化规律,再加上水库底层泄水的发电方式,最终导致梯级筑坝河流下游HCO_3~-浓度逐渐升高。本研究将加深梯级筑坝对河流碳循环影响机理的理解。  相似文献   

6.
陈吉吉  郭婧  徐蘇士  陶蕾  荆红卫 《环境科学》2020,41(11):4905-4913
为丰富水库水体碳循环研究,有效地从源头控制饮用水源水营养盐输入.以北京境内密云水库及其主要入库河流(密云水库流域水体,包括白河干支流、潮河干支流和密云水库)为研究对象,京密引水渠水体为参比,对比分析了夏季不同水体溶解性有机碳和溶解性无机碳的质量浓度水平及碳同位素组成.结果表明,密云水库流域水体夏季溶解性有机碳(DOC)质量浓度的总体变化范围是1.07~5.19 mg ·L-1,平均值是2.61 mg ·L-1;δ13CDOC值变化范围为-27.4‰~-24.3‰,平均值为-25.8‰.入库河流夏季DOC主要来自土壤有机质,密云水库夏季DOC主要来自陆源C3植物,内源物质对流域水体DOC同样有一定贡献,水位升高导致库滨带淹水可能是密云水库DOC偏高的重要原因.研究区域水体夏季δ13CDIC值变化范围为-12.6‰~-5.75‰,平均值为-9.44‰,土壤CO2溶解碳酸盐岩过程是河流溶解性无机碳(DIC)的主要贡献者,且DIC明显被水生生物的光合作用所利用.密云水库溶解性碳(DOC和DIC)浓度显著高于京密引水渠水体(P<0.01),两种水体碳素浓度、组分可能存在差异.总体上,除个别点位外,密云水库流域水体夏季DOC受人类生活源影响较小,DIC转化为DOC可能同样是夏季库区水体DOC的潜在来源.  相似文献   

7.
三峡水库坝前水体水化学及溶解无机碳时空分布特征   总被引:9,自引:1,他引:8  
以三峡水库坝前水体为研究对象,分析了三峡水库蓄水至145m和172m水位时坝前垂向水体基本物理化学参数、主量元素、溶解无机碳(DIC)含量及其碳同位素(δ13CDIC)分布特征.研究结果表明,无论夏季还是冬季,坝前水体均没有出现水温分层现象,pH、电导、溶解氧也没有发生分层现象.坝前水体水化学组成主要受碳酸盐岩风化的控制,主量元素、溶解无机碳含量和三峡大坝截流前相比没有发生明显的变化.水体δ13CDIC值夏季(丰水期)低于冬季(枯水期),在垂向上变化不明显,与水库、湖泊δ13CDIC的时空变化特征相异而与自然河流的变化特征相似.目前,三峡水库坝前水体水化学特征主要表现出自然河流的特征,水库"湖沼学反应"还不明显.  相似文献   

8.
花溪河水溶解无机碳同位素的季节变化   总被引:1,自引:0,他引:1  
闫慧  李中轩  陈杰 《地球与环境》2011,39(3):300-304
对乌江上游支流花溪河水进行了一年的监测,测定了DIC含量和δ13 CDIC。结果显示DIC含量在1.73~4.53mmol/L之间,δ13 CDIC的变化范围-9.6‰~-3.6‰,反映了碳酸盐岩的主要控制作用,δ13 CDIC和DIC含量之间存在负相关关系,表明有机质分解作用、生物作用对河水DIC也有着重要影响。冬季...  相似文献   

9.
对贵州施秉白云岩喀斯特世界自然遗产地49个水点进行采样,分析地表水和地下水水化学特征及控制因素,并探讨溶解无机碳(DIC)稳定同位素的分布特征和来源.结果发现,研究区地表水和地下水p H值呈中性到碱性,溶解质较低,水中阳离子以Ca2+、Mg2+为主,阴离子以HCO-3为主,水化学类型为重碳酸-钙镁型(HCO3-Ca·Mg).北部上游页岩分布区外源水水中Cl-、NO-3、SO2-4的比重相对白云岩区喀斯特水水点的高,Si的含量也明显高于白云岩地区喀斯特水;外源水的SIc和SId值为负,而流经白云岩区后均大于0.水化学数据表明研究区水化学受降水和人为活动影响很小,Gibbs图显示水中离子组成主要受岩性的控制.研究区喀斯特地表水中δ13CDIC值变化范围为-8.27‰~-11.55‰,平均为-9.45‰,地下水的δ13CDIC值范围为-10.57‰~-15.59‰,平均为-12.04‰,地表水δ13CDIC值比地下水偏重.DIC的δ13CDIC值在杉木河支流上整体表现为河流上游相对于下游偏轻,而杉木河干流上河水DIC的δ13CDIC值的变化则比较复杂.根据同位素质量平衡,利用DIC的δ13CDIC实测值,计算了喀斯特区地下水DIC来自土壤CO2和白云岩矿物溶解的比例,计算结果为51.2%来自于土壤CO2,矿物本身的贡献约为48.8%.  相似文献   

10.
通过对云南抚仙湖流域土壤、植被和主要入湖河流有机碳含量和碳同位素组成的对比研究,探讨了抚仙湖主要入湖河流有机碳来源、空间分布特征及其影响因素。结果表明,抚仙湖入湖河流溶解有机碳(DOC)含量较高,变化范围为2.79~38.02mg/L,且呈西部(19.20mg/L)北部(13.82mg/L)东部(3.37mg/L)的分布特征;河流颗粒有机碳(POC)含量较低,变化范围为0.22~2.68mg/L,且北部(0.84mg/L)西部(0.56mg/L)东部(0.40mg/L)。抚仙湖主要入湖河流水体δ~(13)C_(DOC)值变化范围为-12.6‰~-25.5‰,且随DOC含量增大而略呈偏负趋势,表明抚仙湖入湖河流DOC除来源于流域土壤侵蚀外,农业面源污染和生活污水排放也是重要的贡献源。抚仙湖入湖河流水体δ~(13)C_(POC)值主要分布范围为-23.2‰~-27.0‰,与流域土壤及植物δ~(13)C一致,远离内源POC的δ~(13)C范围,指示河流POC主要来源于流域土壤侵蚀和植物碎屑输入。  相似文献   

11.
河流拦截筑坝形成蓄水河流,逐渐向“湖泊型”生态系统演化,加强了生物地球化学循环并进一步影响水体碳循环.为了更准确地进行全球碳循环的预算并预测碳循环变化,必须确定对河流系统产生影响的碳来源.因此,通过测定库区水体c(DIC)(DIC为溶解性无机碳)及其δ13C(稳定碳同位素),分析了DIC的主要来源及其影响因素.结果表明:①水体c(DIC)为1.80~5.02 mmol/L,而δ13CDIC(溶解性无机碳的稳定碳同位素)为-7.45‰~-1.26‰.c(DIC)与EC(电导率)、TA(总碱度)均呈正相关,与水温呈负相关.表水层δ13CDIC与c(DIC)、TA均呈正相关,与EC在入库河流处呈负相关;而滞水层δ13CDIC与EC、pCO2(二氧化碳分压)、TA、c(DIC)均呈正相关.②水平方向上,表水层各指标变化明显,TA、EC、SIc(方解石饱和指数)和c(DIC)整体上呈降低趋势,δ13CDIC从上游至下游逐渐偏正,受碳酸盐矿物溶解影响显著;垂直方向上,热分层和化学分层现象对水的碳循环产生了显著影响.有机质分解在深水层释放大量CO2致使c(DIC)、pCO2逐渐升高及δ13CDIC逐渐降低,c(DIC)及其δ13C在整个水柱上存在显著的空间异质性.研究显示,光照水库DIC的来源主要有两种,即生物源的土壤CO2和有机物呼吸产生的溶解CO2形式的DIC源、碳酸盐矿物风化所产生的碳酸氢盐形式的DIC源.   相似文献   

12.
长江口溶解无机碳循环的地球化学研究   总被引:2,自引:0,他引:2  
于2005年6月对长江口23个站点的溶解性无机碳及其同位素组成进行了采样调查。结果发现长江河流区水体的pCO2均处于过饱和状态,但在进入河口区后发生大幅度的下降;δ13CDIC为-10.0‰~-0.9‰,且随盐度发生梯度性变化;DIC和δ13CDIC值偏离河水、海水混合线,显示了长江河口碳的复杂生物地球化学过程,包括内部碳酸盐岩体系及外部生物的作用:河流区主要受水-气界面CO2逸散的影响;河口区主要受光合作用的影响;海岸区则主要受碳酸盐类矿物沉淀作用的影响。  相似文献   

13.
东营凹陷沙河街组沉积岩碳氧同位素组成的古环境记录   总被引:1,自引:0,他引:1  
分析了东营凹陷沙河街组沉积碳酸盐的碳氧同位素组成,结果显示,东营凹陷沙河街组沉积碳酸盐δ13CPDB值介于-2.45‰~+6.44‰之间,平均值为+2.43‰;δ18OPDB值介于-13.98‰~-5.68‰之间,平均值为-9.47‰。δ13CPDB、δ18OPDB之间具有良好的正相关性,指示沙河街组沉积时期,东营凹陷为相对封闭的湖泊环境。在纵向上,沙三段沉积碳酸盐碳氧同位素发生了负漂移,具有最低的δ18OPDB和δ13CPDB,而沙二段沉积碳酸盐具有最高的δ18OPDB和δ13CPDB。东营凹陷古近系湖泊沉积碳酸盐碳氧同位素组成的变化是沉积环境综合作用的结果,指示了区域古气候条件由沙四期的干旱气候,向沙三期的湿润气候转变,至沙二期,气候又经历了短暂的干热阶段。东营凹陷沙河街期的沉积环境特征直接控制了各阶段发育的泥质岩类型及其沉积有机质特征。  相似文献   

14.
四川黄龙沟天然水中的深源CO_2与大规模的钙华沉积   总被引:10,自引:1,他引:10  
在有大规模钙华沉积的四川黄龙沟中,使用化学成分数据以及碳氧稳定同位素组成对其水文地球化学特征进行了分析研究。研究区钙华沉积的地表溪流水质基本上受到两种水混合的制约,即断层泉水和山区的融雪(冰)水。泉水中含有高浓度的经由断层提供的CO2,结果高浓度的溶解CO2使得其溶解的碳酸盐岩比普通的岩溶泉溶解的碳酸盐岩高得多,同时也导致硅酸盐岩的溶解。黄龙沟中上游的泉水相对于方解石接近于平衡。溶解无机碳(DIC)的浓度和它们的δ13C值是大约由c=0.02mol·L1δ13C=-3‰的CO2(aq)与含有δ13C=+3‰的碳酸盐岩在封闭系统条件下反应的结果。估计这些CO2中约有70%来自上地幔。所有泉水的水化学数据均落在高岭石稳定域内,但对Na长石和Ca长石具有侵蚀性。由于这些长石矿物的溶解速率太慢,所以水中的化学成分远离长石稳定域。地表溪流的DIC种类之间达到同位素平衡,在不同观测点发现的δ13CDIC变化主要是由于从水中释放出的CO2的程度不同引起的。水样的δ18O值与其采集点的海拔高度之间存在线性关系;研究区的地表溪流的氧同位素组成受到蒸发的制约。在流经钙华沉积物的地表溪流中白天和夜晚的水化学及pH的日变化表明生物作用促进了碳酸盐的沉积,尽管作用不显著。据估计研究区碳酸钙的日沉积速率是4778kg·km2,即约1mm·a1。  相似文献   

15.
沁河流域人为源硝酸盐输入增加了河流富营养化的风险.为识别沁河上游硝酸盐来源,分别于2017年10月、2018年3月和2018年6月在沁河上游采集了28个河流表层水样,联合稳定同位素(δ15N-NO3-和δ18O-NO3-、δD-H2O和δ18O-H2O)和水化学参数(Cl-、NO3--N、NH4+-N)评估了沁河上游河流硝酸盐源与关键过程,并基于贝叶斯混合模型量化了不同硝酸盐来源的贡献.结果表明:①沁河上游溶解无机氮以NO3--N为主,秋季[(2.40±1.17)mg/L]高于春季[(2.11±1.03)mg/L]和夏季[(1.50±0.61)mg/L];受积雪融化的影响,春季δ18O-NO3-(13.0‰±3.13‰)显著高于夏季(2.90‰±3.12‰)和秋季(6.62‰±1.30‰).②SIAR同位素模型结果表明,沁河上游硝酸盐主要来自土壤氮和化肥.在春、夏、秋3个季节,土壤氮的硝化对沁河上游硝酸盐的贡献比例分别为27.8%、39.5%和39.3%,化肥贡献比例分别为29.1%、40.2%和41.9%.春季(24.7%)大气沉降的贡献比例高于夏季(2.4%)和秋季(10.6%).③沁河上游硝酸盐主要受硝化过程的影响,没有发生明显的反硝化过程.研究显示,春季、夏季和秋季沁河上游硝酸盐主要来自土壤氮和化肥的硝化,硝酸盐污染防治应考虑化肥的使用效率和抑制硝化过程的发生.   相似文献   

16.
稳定碳同位素比值(13 C/12 C)是指示碳生物地球化学行为的有效指标。本研究研制并优化了CO2及其稳定同位素测定的吹扫预处理系统,将该系统与EA-IRMS联用实现了溶解CO2、其它形式DIC及二者碳同位素比值的在线同时测定,测得河口水样中易逃逸CO2及其它形式DIC的相对标准偏差分别为3.7%和3.0%;二者的δ13 C值的标准偏差分别为0.30‰和0.15‰。运用此法对九龙江9个站位表层水中不同形态DIC的碳同位素进行测定,得出易逃逸CO2的δ13 C平均值为-12.90‰,其他形式DIC的δ13 C平均值为-5.63‰。该法为水体中无机碳及其稳定碳同位素的测定研究提供了新途径。  相似文献   

17.
本文调查分析了黄河口附近海域沉积物中碳氮元素地球化学特征及有机质来源研究。发现黄河口附近海域沉积物TOC、TN含量、C/N、δ13C以及δ15N分别为(0.40±0.19)%、(0.049±0.018)%、7.92±1.48、(-23.94±0.69)‰、(7.06±0.72)‰。其中TOC随着输送距离增加显著下降(P < 0.05),δ13C沿着输送距离增加极显著上升(P < 0.01)。黄河口附近海域沉积物有机质来源可分为陆源、河口源、海源3种来源。其含量分别为(44.6±6.5)%、(6.5±5.5)%、(48.9±6.1)%。陆源有机质含量随着输送距离增加显著下降,海源有机质含量随着输送距离增加显著上升(P < 0.05)。研究区域陆源有机碳埋藏速率为171~214 t/(km2·a),约20%左右黄河输送陆源有机碳埋藏在黄河口附近海域。黄河输送不仅影响了河口及周边海域有机质来源组成,还促进了陆源有机质在河口区域的埋藏。  相似文献   

18.
根据2019年8月对汾河干流水文参数和碳酸盐参数的调查,初步探讨了溶解无机碳(DIC)及同位素值(δ13CDIC)的沿程变化及其影响因素.结果显示,源头水DIC为2756μmol/kg,δ13CDIC为-9.6‰,土壤CO2输入和碳酸岩化学风化可能是其主要来源;在太原市区上游的水库影响区,较强的初级生产使得水体DIC(平均值为2377μmol/kg)和CO2分压(pCO2)(平均值为552μatm)偏低,δ13CDIC(平均值为-5.2‰)偏正,而在市区下游的水坝滞流影响区,城市污水的大量输入和有机物的降解使得DIC(>4900μmol/kg)和pCO2(>5000μatm)显著升高,δ13CDIC(<-10.3‰)偏负;在流经主要粮食产区的汾河下游,δ13CDIC偏正(~-8.0‰)于源头,可能与C4植被(如玉米)的存在有关.可见,人为干扰已成为影响汾河DIC沿程变化的重要因素,表现为大气CO2强源的城市下游水坝滞留区在今后需受到更多关注.  相似文献   

19.
太湖西苕溪流域地表水、地下水硝酸盐污染特征及来源   总被引:3,自引:1,他引:2  
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析. 结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07~3.45 mg/L,ρ(NO2--N)为0.15~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L. 下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L. ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源. NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号