首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe damage often provokes compensatory resprouting of plants, which commonly modify plant morphological and phenological traits. Rapid plant growth often results in poorly defended nutrient-rich foliage, which is more susceptible to foliar-chewing herbivores. It is less known how other guilds of arthropods are affected by plant regrowth. We tested the hypotheses that clipping-induced resprouting and nutrient availability, separately and in combination, would (1) influence plant traits, (2) benefit chewing herbivores, sap-suckers, gallers, and pre-dispersal seed predators, and (3) cascade up to the third trophic level by positively affecting herbivores. Resprouted plants were morphologically and phenologically different from undamaged plants; as a result, seed predation, infestation rate, richness, and diversity of seed predators increased, and species composition was altered. Leaf consumption by chewing herbivores was four times higher on resprouted plants. The number of galls decreased, whereas the abundance of sap-sucking and leaf-chewing insects was not affected. The incidence of predators and parasitoids was also higher on resprouted plants and on plants with nutrients added, but the increase was less pronounced compared to the herbivores they feed on. Thus, the effects of resprouting, contingent on nutrient availability, can propagate simultaneously through two independent tri-trophic level pathways.  相似文献   

2.
Otto SB  Berlow EL  Rank NE  Smiley J  Brose U 《Ecology》2008,89(1):134-144
Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.  相似文献   

3.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   

4.
5.
Tidal inundation and salinity are considered to be controlling factors in salt marsh species distributions. Parasitic plants may also influence community organization as parasite-host interactions may play a functional role in stress amelioration due to physiological mechanisms for salinity tolerance and resource acquisition. Endangered root hemiparasites (Cordylanthus maritimus ssp. palustris and Cordylanthus mollis ssp. mollis) occupy unique habitat within fragmented northern California tidal wetlands. My objective was to examine the effects of these root hemiparasites on soil salinity, aeration, and community composition. I compared experimentally established bare patches, shaded and unshaded, and parasite removal patches to controls with hemiparasites across intertidal elevation gradients. Plant community composition, soil salinity, and redox potential were measured as response variables. In this field removal experiment, I demonstrated that parasite-host associations can enhance the amelioration of physical stress conditions in the salt marsh exceeding the passive role of shading by vegetation. Consumer-driven reduction of physical stress resulted in increased plant species richness, and the effect was most pronounced with elevated salinity and hypoxia stress. Although previous studies have demonstrated that removal of dominant plant biomass by herbivores can increase physical stress in salt marshes, this is one of the first examples of a positive indirect effect of a consumer on community diversity through physical stress relief. Greater understanding of biological interactions coupled with abiotic factors may improve rare plant conservation and salt marsh restoration success.  相似文献   

6.
Biodiversity loss is proceeding at an unprecedented rate, yet we lack a thorough understanding of the consequences of losing diversity at different scales. While species diversity is known to impact community and ecosystem processes, genotypic diversity is assumed to have relatively smaller effects. Nonetheless, a few recent studies suggest that genotypic diversity may have quantitatively similar ecological consequences compared to species diversity. Here we show that increasing either genotypic diversity of common evening primrose (Oenothera biennis) or species diversity of old-field plant species resulted in nearly equivalent increases (approximately 17%) in aboveground primary production. The predominant mechanism explaining this effect, niche complementarity, was similar for each type of diversity. Arthropod species richness also increased with both types of plant diversity, but the mechanisms leading to this effect differed: abundance-driven accumulation of arthropod species was important in plant genotypic polycultures, whereas resource specialization was important in plant species polycultures. Thus, similar increases in primary productivity differentially impacted higher trophic levels in response to each type of plant diversity. These results highlight important ecological similarities and differences between genotypic and species diversity and suggest that genotypic diversity may play a larger role in community and ecosystem processes than previously realized.  相似文献   

7.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

8.
Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on detritus/algae as basal resources instead of the dominant vegetation. The reestablishment of Spartina after removal of Phragmites, however, not only returned species assemblages typical of reference (uninvaded) Spartina, but stable isotope signatures suggest that the trophic interactions among the arthropods were also similar in reestablished habitats. Specifically, both herbivores and predators showed characteristic Spartina signatures, suggesting the return of the original grazer-based food web structure in the restored habitats.  相似文献   

9.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

10.
Benefits of Conservation of Plant Genetic Diversity to Arthropod Diversity   总被引:5,自引:0,他引:5  
Abstract:  We argue that the genetic diversity of a dominant plant is important to the associated dependent community because dependent species such as herbivores are restricted to a subset of genotypes in the host-plant population. For plants that function as habitat, we predicted that greater genetic diversity in the plant population would be associated with greater diversity in the dependent arthropod community. Using naturally hybridizing cottonwoods (  Populus spp.) in western North America as a model system, we tested the general hypothesis that arthropod alpha (within cross-type richness) and beta (among cross-type composition) diversities are correlated with cottonwood cross types from local to regional scales. In common garden experiments and field surveys, leaf-modifying arthropod richness was significantly greater on either the F1 (1.54 times) or backcross (1.46 times) hybrid cross types than on the pure broadleaf cross type (  P. deltoides Marshall or P. fremontii Watson). Composition was significantly different among three cross types of cottonwoods at all scales. Within a river system, cottonwood hybrid zones had 1.49 times greater richness than the broadleaf zone, and community composition was significantly different between each parental zone and the hybrid zone, demonstrating a hierarchical concentration of diversity. Overall, the habitats with the highest cottonwood cross-type diversity also had the highest arthropod diversity. These data show that the genetics of habitat is an important conservation concept and should be a component of conservation theory.  相似文献   

11.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

12.
Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity.  相似文献   

13.
Resource consumption often increases with greater consumer biodiversity. This could result either from complementarity among consumers or the inclusion of particular key species, and it is often difficult to differentiate between these two mechanisms. We exploited a simple plant mutation (reduced production of surface waxes) to alter foraging within a community of aphid predators, and thus perhaps shift the nature of resulting predator diversity effects. We found that greater predator species richness dramatically increased prey suppression and plant biomass only on mutant, reduced-wax pea plants (Pisum sativum). On pea plants from a sister line with wild type, waxier plant surfaces, predator species richness did not influence predators' impacts on herbivores or plants. Thus, a change in plant surface structure acted to turn on, or off, the cascading effects of predator diversity. Greater predator richness encouraged higher densities of true predators but did not lead to greater reproduction by a parasitoid, Aphidius ervi; fecundity of each natural enemy species was similar for the two plant types. Behavioral observations indicated that although A. ervi was less likely to forage within species-rich predator communities, low-wax plants mitigated this interference by encouraging generally greater A. ervi foraging and thus high rates of aphid dislodgement (aphids dropped from plants to escape A. ervi, but not the other predators). Thus, only species-rich, low-wax plants simultaneously encouraged strong species-specific effects of A. ervi, and strong complementarity among the other predator species. In summary, our study provides evidence that diversity effects in predator assemblages are sensitive to habitat characteristics. Further, we show that a simple plant morphological trait, controlled by a single gene mutation, can dramatically alter the cascading effects of predator species richness on herbivores and plants.  相似文献   

14.
We tested the hypothesis that species loss at one trophic level will reduce the temporal stability of populations at other trophic levels. We examined the temporal stability of annual plant populations on plots that experimentally manipulated the functional diversity of seed-eating rodent consumers. Experimental reduction of rodent functional diversity destabilized populations of small-seeded plants but had less consistent effects on larger-seeded species. Small-seeded species also exhibited a greater number of years of zero abundance. Thus, experimental reduction of rodent functional diversity resulted in lower plant diversity. The decline in the temporal stability of small-seeded plants likely resulted from increased interspecific competition by large-seeded plants. These results demonstrate that the loss of species at one trophic level can lead to reduced richness at lower trophic levels via competition and reduced temporal stability.  相似文献   

15.
Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had > 40% fewer seedlings, > 40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact. Using a complementary approach in unmanipulated plots in four forests, we used path analysis to test for a positive association between seedling diversity and herbivore damage on Piper species. In unmanipulated plots, for both generalist and specialist herbivores, our data were significant fits to the causal model that Piper herbivores decrease evenness and increase plant species richness, corroborating the experimental results. Because herbivores changed how individuals were apportioned among the species and families present (lower evenness), one interpretation of these associations between herbivores on Piper shrubs and local seedling richness is that high seedling mortality in dominant families allowed the colonization or survival of less common species. If interspecific or apparent competition allowed for a relative increase in species richness, then the Janzen-Connell hypothesis may extend its predictions to generalist seedling predators. We speculate that apparent competition may explain some of the deviations from neutral model predictions, especially at small scales.  相似文献   

16.
Abstract: Searching for indicator taxa representative of diverse assemblages, such as arthropods, is an important objective of many conservation studies. We evaluated the impacts of a wide gradient of disturbance in Gabon on a range of arthropod assemblages representing different feeding guilds. We examined 4 × 105 arthropod individuals from which 21 focal taxa were separated into 1534 morphospecies. Replication included the understory of 3 sites in each of 4 different stages of forest succession and land use (i.e., habitats) after logging (old and young forests, savanna, and gardens). We used 3 complementary sampling methods to survey sites throughout the year. Overall differences in arthropod abundance and diversity were greatest between forest and open habitats, and cleared forest invaded by savanna had the lowest abundance and diversity. The magnitude of faunal differences was much smaller between old and young forests. When considered at this local scale, anthropogenic modification of habitats did not result in a monotonous decline of diversity because many herbivore pests and their associated predators and parasitoids were abundant and diverse in gardens, where plant productivity was kept artificially high year‐round through watering and crop rotation. We used a variety of response variables to measure the strength of correlations across survey locations among focal taxa. These could be ranked as follows in terms of decreasing number of significant correlations: species turnover > abundance > observed species richness > estimated species richness > percentage of site‐specific species. The number of significant correlations was generally low and apparently unrelated to taxonomy or guild structure. Our results emphasize the value of reporting species turnover in conservation studies, as opposed to simply measuring species richness, and that the search for indicator taxa is elusive in the tropics. One promising alternative might be to consider “predictor sets” of a small number of taxa representative of different functional groups, as identified in our study.  相似文献   

17.
Arthropod assemblages are best predicted by plant species composition   总被引:2,自引:0,他引:2  
Insects and spiders comprise more than two-thirds of the Earth's total species diversity. There is wide concern, however, that the global diversity of arthropods may be declining even more rapidly than the diversity of vertebrates and plants. For adequate conservation planning, ecologists need to understand the driving factors for arthropod communities and devise methods, that provide reliable predictions when resources do not permit exhaustive ground surveys. Which factor most successfully predicts arthropod community structure is still a matter of debate, however. The purpose of this study was to identify the factor best predicting arthropod assemblage composition. We investigated the species composition of seven functionally different arthropod groups (epigeic spiders, grasshoppers, ground beetles, weevils, hoppers, hoverflies, and bees) at 47 sites in The Netherlands comprising a range of seminatural grassland types and one heathland type. We then compared the actual arthropod composition with predictions based on plant species composition, vegetation structure, environmental data, flower richness, and landscape composition. For this we used the recently published method of predictive co-correspondence analysis, and a predictive variant of canonical correspondence analysis, depending on the type of predictor data. Our results demonstrate that local plant species composition is the most effective predictor of arthropod assemblage composition, for all investigated groups. In predicting arthropod assemblages, plant community composition consistently outperforms both vegetation structure and environmental conditions (even when the two are combined), and also performs better than the surrounding landscape. These results run against a common expectation of vegetation structure as the decisive factor. Such expectations, however, have always been biased by the fact that until recently no methods existed that could use an entire (plant) species composition in the explanatory role. Although more recent experimental diversity work has reawakened interest in the role of plant species, these studies still have not used (or have not been able to use) entire species compositions. They only consider diversity measures, both for plant and insect assemblages, which may obscure relationships. The present study demonstrates that the species compositions of insect and plant communities are clearly linked.  相似文献   

18.
We tested joint effects of predator loss and increased resource availability on the grazers’ trophic level and the propagation of trophic interactions in a benthic food web by excluding larger predatory fish from cages and manipulating nutrients in the coastal zone of the Baltic Sea. The combination of nutrient enrichment and excluding larger predators induced an increase in medium-sized predatory fish (three-spined stickleback). The meso-predator fish in turn did not change the total abundance of the invertebrate herbivores, but did cause a substantial shift in their community composition towards the dominance of gastropods by reducing amphipods by 40–60%, while gastropods were left unchanged. The shift in grazer composition generated a 23 times higher producer biomass, but only under nutrient enrichment. Our results show that top-predator declines can substantially shift the species composition at the grazers’ level, but that cascading effects on producers by a trophic cascade strongly depend on resource availability.  相似文献   

19.
Martin TE 《Ecology》2007,88(2):367-380
The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions of multiple trophic components.  相似文献   

20.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号