首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
垃圾填埋场建设项目的主要环境问题包括:渗沥液排放、地下水环境污染、大气环境污染、噪声污染、景观变化和环境安全。根据工作经验,建立了包括建设项目基本情况、生态环境影响、社会环境影响、生态环境保护措施四大类调查监测指标为核心的环保验收调查指标体系,提出了文件资料核实、现场勘查、遥感调查、公众意见调查、环境监测和摄影法为主的建设项目竣工环保验收调查技术方法。  相似文献   

2.
生活垃圾的处置一直以填埋为主,垃圾填埋承载着巨大的环境压力,尤其是垃圾填埋产生的渗滤液会对地下水造成砷、汞污染。为了解北京市生活垃圾填埋场地下水砷、汞污染水平,在北京市5座生活垃圾填埋场布设采样点,采集36个地下水样品,采用氢化物发生-原子荧光法,分析了地下水砷、汞含量特征。结果表明,36个地下水样品砷浓度范围0.41~4.82μg/L,汞浓度范围0.024~0.121μg/L,北京市典型垃圾填埋场地下水样品不存在砷、汞污染问题。  相似文献   

3.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   

4.
/ In modern intensive animal farming the disposal of a large amount of waste is of great concern, as, if not properly performed, it can cause the pollution of water, mainly because of the high content of nitrate and phosphate. This paper presents the results of a study intended to assess the environmental sustainability of animal waste disposal on agricultural soils in the alluvial plain of the River Chiana (Tuscany, Italy), a particularly sensitive area because of the high vulnerability of the shallow aquifer and of the intensive agricultural and breeding activities. With this aim, a strategy has been employed, that consists of the integrated use of a management model and GISs. The consequences on groundwater of applying animal waste to different kind of soils and crop arrangements have been simulated by means of the management model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems, ver 2.01). As the huge amount of data required by such a sophisticated model does not allow applications at a scale larger than the field size, IDRISI and GRASS GIS packages have been used to divide the study area into land units, with homogeneous environmental characteristics, and then to generalize on these units the outputs of the model. The main conclusions can be synthesized as follows: The amount of animal waste produced in some of the investigated areas (i.e., municipal territory) is greater than that disposable on their own agricultural soil with no risks to the groundwater; consequently a cooperative approach among municipalities is necessary in order to plan waste disposal in a comprehensive and centralized way.KEY WORDS: Land use; Animal waste disposal; Groundwater protection; GIS, Management models  相似文献   

5.
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L–L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.  相似文献   

6.
Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site.Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria.  相似文献   

7.
Methane and trace organic gases produced in landfill waste are partly oxidized in the top 40 cm of landfill cover soils under aerobic conditions. The balance between the oxidation of landfill gases and the ingress of atmospheric oxygen into the soil cover determines the attenuation of emissions of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate the contributions of various gas transport processes on methane attenuation in landfill cover soils. For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column. Simulations suggest that production of water or accumulation of exopolymeric substances due to microbially mediated methane oxidation can significantly reduce diffusive fluxes. Assuming a constant rate of methane production within a landfill, reduction of the diffusive transport properties, primarily due to exopolymeric substance production, may result in reduced methane attenuation due to limited O(2) -ingress.  相似文献   

8.
土壤中污染物迁移模型在油田环境影响评价中的应用   总被引:6,自引:0,他引:6  
在石油的生产、运输、贮存以及炼制等过程中都存在泄油、漏油风险,各生产过程中的废弃物,如油类、重金属等各种化学物质也会危害水土环境,进而危及当地地下水源。文章分析了油田企业污染物对土壤及地下水的主要污染途径,提出了将污染物在土壤中的迁移模型用于预测污染物浓度的方法。建立了污染物由土壤迁至室内空气、地下水、农作物及由地下水转移到地表水的迁移数学模型,该模型可以运用于油田环境影响评价。  相似文献   

9.
ABSTRACT: A methodology for ground water remediation design has been developed that interfaces ground water simulation models with an enhanced annealing optimizer. The ground water flow and transport simulators provide the ability to consider site‐specific contamination and geohydrologic conditions directly in the assessment of alternative remediation system designs. The optimizer facilitates analysis of tradeoffs between technical, environmental, regulatory, and financial risks for alternative design and operation scenarios. A ground water management model using an optimization method referred to as “enhanced annealing” (simulated annealing enhanced to include “directional search” and “memory” mechanisms) has been developed and successfully applied to an actual restoration problem. The demonstration site is the contaminated unconfined aquifer referred to as N‐Springs located at Han‐ford, Washington. Results of the demonstration show the potential for improving groundwater restoration system performance while reducing overall system cost.  相似文献   

10.
The accelerating pace of waste generation from used electrical and electronic equipment is of growing global concern. Within this waste stream, computer hardware is quite significant in terms of both volume and risk to the environment because of the hazardous materials within it. The waste management hierarchy of prevention, reuse, recycle, treatment and disposal in landfill is accepted as a universal guideline for waste management. The contemporary concept of integrated solid waste management is very complex comprising of not only the environmental aspects or the technical aspects of the waste management hierarchy, but also incorporating economic, institutional, perceived risk and social issues in the context of complete life cycle of waste. Moreover, when to shift from one stage of hierarchy to another, is an involved decision warranting inclusion of several case specific issues. This paper presents a life cycle based multi-objective model that can help decision makers in integrated waste management. The proposed model has been applied to a case study of computer waste scenario in Delhi, India, which apart from having computer waste from its native population receives large quantities of imported second hand computers. The model has been used to evaluate management cost and reuse time span or life cycle of various streams of computer waste for different objectives of economy, perceived risk and environmental impact. The model results for different scenarios of waste generation have been analyzed to understand the tradeoffs between cost, perceived risk and environmental impact. The optimum life cycle of a computer desktop was observed to be shorter by 25% while optimizing cost than while optimizing impact to the environment or risk perceived by public. Proposed integrated approach can be useful for determining the optimum life cycle of computer waste, as well as optimum configuration of waste management facilities, for urban centers where computer waste related issues are of growing concern.  相似文献   

11.
Recycling operations have become one of the primary strategies for waste management, worldwide. Especially, recycling operations are viewed as among the most effective techniques for reducing the amount of municipal solid waste disposed at landfill sites. Botswana's environmental policy on recycling stipulates, among others, that all waste management authorities should provide information on the classification and quantities of controlled waste targeted for recycling. This paper, therefore, examines the extent to which recycling operations in Botswana have either been conducted in compliance with or in violation of some major environmental requirements as enunciated on statutory guidelines. Compatibility between environmental policies on recycling and actual practice is evaluated focusing on two companies (Dumatau trading and Botswana Tissue) involved in recycling operation. Data from the two companies is complemented by one collected from the Gaborone landfill site. Finally, this study discusses on the role played by various stakeholders in policy formulation and implementation with particular emphasis being placed on a select number of non-governmental organisations (NGO).  相似文献   

12.
The accelerating pace of waste generation from used electrical and electronic equipment is of growing global concern. Within this waste stream, computer hardware is quite significant in terms of both volume and risk to the environment because of the hazardous materials within it. The waste management hierarchy of prevention, reuse, recycle, treatment and disposal in landfill is accepted as a universal guideline for waste management. The contemporary concept of integrated solid waste management is very complex comprising of not only the environmental aspects or the technical aspects of the waste management hierarchy, but also incorporating economic, institutional, perceived risk and social issues in the context of complete life cycle of waste. Moreover, when to shift from one stage of hierarchy to another, is an involved decision warranting inclusion of several case specific issues. This paper presents a life cycle based multi-objective model that can help decision makers in integrated waste management. The proposed model has been applied to a case study of computer waste scenario in Delhi, India, which apart from having computer waste from its native population receives large quantities of imported second hand computers. The model has been used to evaluate management cost and reuse time span or life cycle of various streams of computer waste for different objectives of economy, perceived risk and environmental impact. The model results for different scenarios of waste generation have been analyzed to understand the tradeoffs between cost, perceived risk and environmental impact. The optimum life cycle of a computer desktop was observed to be shorter by 25% while optimizing cost than while optimizing impact to the environment or risk perceived by public. Proposed integrated approach can be useful for determining the optimum life cycle of computer waste, as well as optimum configuration of waste management facilities, for urban centers where computer waste related issues are of growing concern.  相似文献   

13.
Site selection is an important and necessary issue for waste management in fast-growing regions. Because of the complexity of waste management systems, the selection of the appropriate solid waste landfill site requires consideration of multiple alternative solutions and evaluation criteria. Based on actual conditions of the study area, we considered economic factors, calculated criteria weights using the analytical hierarchy process (AHP), and built a hierarchy model for solving the solid waste landfill site-selection problem in Beijing, China. A geographic information system (GIS) was used to manipulate and present spatial data. All maps are graded from 1 (lowest suitability) to 5 (highest suitability) using spatial information technologies. The candidate sites were determined by aggregation based on the criteria weights. The candidate sites are divided by ‘best’, ‘good’ and ‘unsuitable’ landfill areas. Best landfill areas represent optimal sites; good landfill areas can be used as back-up candidate sites. Our work offers a siting methodology and provides essential support for decision-makers in the assessment of waste management problems in Beijing and other rapidly developing cities in developing countries.  相似文献   

14.
A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical–physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality.  相似文献   

15.
ABSTRACT: A combined economic and water quality modeling framework was used to evaluate impacts of alternative policies and management practices on reducing nitrate movement to groundwater for dairy farms in Rockingham County, Virginia. The analysis considers three on-farm manure storage options, cost-sharing programs for purchasing manure storage facilities, restrictions on nitrogen application rates, and a tax on commercial fertilizer. The CREAMS model was used to estimate nitrate leaching from the crop root zone for various nutrient (and manure) management practices, based on timing and rate of manure and fertilizer applications. The mixed-integer programming economic model considers water quality, policy, and economic constraints in comparing the profitability of alternative cropping and nutrient management systems that reduce groundwater contamination potential. The study provides both the environmental and economic effects of better management of dairy waste.  相似文献   

16.
The environmental burden of collecting recoverables from households is generally omitted from life-cycle analyses comparing the environmental outcome of using secondary material from post-consumer waste (PCW) with virgin feedstock. However, this burden can be considerable, depending upon the characteristics of the collection methods employed. Given that the basic objective of recycling is to secure environmental benefits, it is vital that the burden of collection through both bring/dropoff and kerbside schemes is taken into account if a valid assessment of the environmental balance resulting from PCW recycling is to be made. This paper presents survey data comparing the burden of collection for different types of recycling provision. It describes the site and spatial characteristics determining the amount of transport dedicated to collection at bring/drop-off sites. Predictor variables are identified as measures of these characteristics, and the survey data compared with them. A regression model to assess energy use at bring/drop-off sites with varying characteristics is then developed. The potential uses of the techniques presented include the evaluation of the environmental burdens of recycling provision at the waste collection authority and regional level, allowing more informed choices to be made in the development of recycling provision from an environmental standpoint.  相似文献   

17.
Gases released from landfill sites into the atmosphere have the potential to cause olfactory nuisances within the surrounding communities. Landfill sites are often located over complex topography for convenience mainly related to waste disposal and environmental masking. Dispersion of odours is strongly conditioned by local atmospheric dynamics. Assessment of odour impacts needs to take into account the variability of local atmospheric dynamics. In this study, we discuss a method to assess odour impacts around a landfill site located over complex terrain in order to provide information to be used subsequently to identify management strategies to reduce olfactory nuisances in the residential neighbourhoods. A weather-type classification is defined in order to identify meteorological conditions under which olfactory nuisances are to be expected. A non-steady state Gaussian model and a full-physics meteorological model are used to predict olfactory nuisances, for both the winter and summer scenarios that lead to the majority of complaints in neighbourhoods surrounding the landfill site. Simulating representative scenarios rather than full years make a high resolution simulation of local atmospheric dynamics in space and time possible. Results underline the key role of local atmospheric dynamics in driving the dispersion of odours. The odour concentration simulated by the full-physics meteorological model is combined with the density of the population in order to calculate an average population exposure for the two scenarios. Results of this study are expected to provide helpful information to develop technical solutions for an effective management of landfill operations, which would reduce odour impacts within the surrounding communities.  相似文献   

18.
Abstract: New criteria, pollutant load of unit area (PLUA), are developed for sustainable water quality management, which not only avoids degrading water quality but also considers the equity of development between different generations. A simulation‐optimization model is established to determine PLUA, in which uses the QUAL2E model to simulate pollutant transport and formulates a linear programming model to optimize the objective of maximal loads (carrying capacity). Two watersheds, the Touchen creek and the Keya creek, both in Taiwan, are taken as case studies. The PLUA criterion is applied to several existing projects which have passed environmental impact assessment (EIA). The results show that if the Hsinchu Science‐Based Industrial Park discharges wastewater to the Touchen creek, the total pollutant discharge of 85.6 kg/day exceeds the allocated load. Consequently, a waste reduction of at least 23.4% is required. Although these existing projects have passed EIA, most of them violate the criterion of PLUA and thus contribute to continued degradation of water quality. This study suggests developing PLUA as a part of the process of strategic environmental assessment (SEA) for watershed management plans and then applying it to EIA as a criterion for new project assessment. Furthermore, if carrying capacities of all pollutant discharges and resource uses can be translated into loads per unit of area, an integrated sustainable watershed management plan can be developed.  相似文献   

19.
The problems encountered when seeking suitable locations for landfill sites often include public concern over the potential visual, health and environmental impacts. There have been many attempts to predict the response of residents in an area to a proposed landfill site and suggestions of ways to adequately consult and include the local population in the decision-making process. An alternative approach is described in this article where the residents living in the vicinity of a landfill site in Bangkok were asked how much they would be willing to pay for the landfill site to be closed and the waste taken out of the city. The method used, the contingent valuation method, can provide information on how much people value environmental goods and services. The use of the technique in this instance provided an estimate of the costs of the disamenity effects of the landfill site to the local residents.  相似文献   

20.
Landfill siting is a difficult, complex, tedious, and protracted process requiring evaluation of many different criteria. This paper presents a fuzzy multicriteria decision analysis alongside with a geospatial analysis for the selection of landfill sites. It employs a two-stage analysis synergistically to form a spatial decision support system (SDSS) for waste management in a fast-growing urban region, south Texas. The first-stage analysis makes use of the thematic maps in Geographical information system (GIS) in conjunction with environmental, biophysical, ecological, and socioeconomic variables leading to support the second-stage analysis using the fuzzy multicriteria decision-making (FMCDM) as a tool. It differs from the conventional methods of integrating GIS with MCDM for landfill selection because the approach follows two sequential steps rather than a full-integrated scheme. The case study was made for the city of Harlingen in south Texas, which is rapidly evolving into a large urban area due to its vantage position near the US-Mexico borderlands. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of FMCDM method to identify the most suitable site using the information provided by the regional experts with reference to five chosen criteria. Research findings show that the proposed SDSS may aid in recognizing the pros and cons of potential areas for the localization of landfill sites in any study region. Based on initial GIS screening and final FMCDM assessment, "site 1" was selected as the most suitable site for the new landfill in the suburban area of the City of Harlingen. Sensitivity analysis was performed using Monte Carlo simulation where the decision weights associated with all criteria were varied to investigate their relative impacts on the rank ordering of the potential sites in the second stage. Despite variations of the decision weights within a range of 20%, it shows that "site 1" remains its comparative advantage in the final site selection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号