首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases. The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area's inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   

2.
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM2.5 and PM10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R2 for converted hourly averaged Dylos mass measurements versus a PM2.5 BAM was 0.79 and that versus a PM10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R2 = 0.35–0.81).

Implications: The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.  相似文献   


3.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

4.
Abstract

The Coordinating Research Council convened two Real-Time PM Measurement Workshops in December 2008 and March 2009 to take an intensive look at the current status and future directions of combustion aerosol measurement. The purpose was to examine the implications of parallel rapid developments over the past decade in ambient aerosol science, engine aftertreatment technology, and aerosol measurement methodology, which provide bene?ts and challenges to the stakeholders in air quality management. The workshops were organized into sessions targeting key issues in ambient and source combustion particulate matter (PM). These include (1) metrics to characterize and quantify PM, (2) the need to reconcile ambient and source measurements, (3) the role of atmospheric transformations on modeling emissions and exposures, (4) the impact of sampling conditions on PM measurement, and (5) the potential bene?ts of novel PM instrumentation. This paper distills the material presented by subject experts and the insights derived from the in-depth discussions that formed the core of each session. The paper’s objectives are to identify areas of consensus that allow wider practical application of the past decade’s advances in combustion aerosol measurement to improve emissions and air quality modeling, develop emissions reduction strategies, and to recommend directions for progress on issues in which uncertainties remain.  相似文献   

5.
Abstract

Air pollution directional risk (APDR) is an essential factor to be assessed when selecting an appropriate landfill site. Because air pollutants generated from a landfill are diffused and transported by wind in different directions and speeds, areas surrounding the landfill will be subject to different associated risks, depending on their relative position from the landfill. This study assesses potential APDRs imposed from a candidate landfill site on its adjacent areas on the basis of the pollutant distribution simulated by a dispersion model, wind directions and speeds from meteorological monitoring data, and population density. A pollutant distribution map layer was created using a geographic information system and layered onto a population density map to obtain an APDR map layer. The risk map layer was then used in this study to evaluate the suitability of a candidate site for placing a landfill. The efficacy of the proposed procedure was demonstrated for a siting problem in central Taiwan, Republic of China.  相似文献   

6.
ABSTRACT

Air pollution studies are based on individual-level health response data and group-level exposure data. Therefore, exposure misclassification occurs, and the results may be biased to an unknown magnitude and direction. Testing the validity of such associations requires a study design using individual-level data for both exposure and response. One can test the plausibility of group-level PM risk estimates by comparing them to individual-level estimates of risk from constituents of ambient air. The twofold purpose of this review is to consider the internal consistency of risks estimated from the three major PM cohort studies and to determine individual-level mortality risks associated with ambient concentrations of tobacco smoke and occupational exposures and compare them with risks associated with ambient PM.

The paper demonstrates the risks are not consistent within and between the PM cohort studies. Higher ambient concentration risks (ACRs) from the ambient PM cohort studies are not coherent with ACRs derived from individual-level smoking and occupational risks for total, cardiopulmonary, and lung cancer mortality. Individual-level studies suggest increased risk of mortality cannot be measured with reliability at concentrations found in ambient air.  相似文献   

7.
ABSTRACT

The spatial variability of different fractions of particulate matter (PM) was investigated in the city of Basel, Switzerland, based on measurements performed throughout 1997 with a mobile monitoring station at six sites and permanently recorded measurements from a fixed site. Additionally, PM10 measurements from the following year, which were concurrently recorded at two urban and two rural sites, were compared.

Generally, the spatial variability of PM4, PM10, and total suspended particulates (TSP) within this Swiss urban environment (area = 36 km2) was rather limited. With the exception of one site in a street canyon next to a traffic light, traffic density had only a weak tendency to increase the levels of PM. Mean PM10 concentration at six sites with different traffic densities was in the range of less than ±10% of the mean urban PM10 level. However, comparing the mean PM levels on workdays to that on weekends indicated that the impact of human activities, including traffic, on ambient PM levels may be considerable.

Differences in the daily PM10 concentrations between urban and more elevated rural sites were strongly influenced by the stability of the atmosphere. In summer, when no persistent surface inversions exist, differences between urban and rural sites were rather small. It can therefore be concluded that spatial variability of annual mean PM concentration between urban and rural sites in the Basel area may more likely be caused by varying altitude than by distance to the city center.  相似文献   

8.
ABSTRACT

The 1995 Integrated Monitoring Study (IMS95) is part of the Phase 1 planning efforts for the California Regional PM10/PM2.5 Air Quality Study. Thus, the overall objectives of IMS95 are to (1) fill information gaps needed for planning an effective field program later this decade; (2) develop an improved conceptual model for pollution buildup (PM10, PM2.5, and aerosol precursors) in the San Joaquin Valley; (3) develop a uniform air quality, meteorological, and emissions database that can be used to perform initial evaluations of aerosol and fog air quality models; and (4) provide early products that can be used to help with the development of State Implementation Plans for PM10. Consideration of the new particulate matter standards were also included in the planning and design of IMS95, although they were proposed standards when IMS95 was in the planning process.  相似文献   

9.
ABSTRACT

The chemical mass balance (CMB) model was applied to winter (November through January) 1991–1996 PM2.5 and PM10 data from the Sacramento 13th and T Streets site in order to identify the contributions from major source categories to peak 24-hr ambient PM2.5 and PM10 levels. The average monthly PM10 monitoring data for the nine-year period in Sacramento County indicate that elevated concentrations are typical in the winter months. Concentrations on days of highest PM10 are dominated by the PM2.5 fraction. One factor contributing to increased PM2.5 concentrations in the winter is meteorology (cool temperatures, low wind speeds, low inversion layers, and more humid conditions) that favors the formation of secondary nitrate and sulfate aerosols. Residential wood burning also elevates fine particulate concentrations in the Sacramento area.

The results of the CMB analysis highlight three key points. First, the source apportionment results indicate that primary motor vehicle exhaust and wood smoke are significant sources of both PM2.5 and PM10 in winter. Second, nitrates, secondarily formed as a result of motor-vehicle and other sources of nitrogen oxide (NOx), are another principal cause of the high PM2.5 and PM10 levels during the winter months. Third, fugitive dust, whether it is resuspended soil and dust or agricultural tillage, is not the major contributor to peak winter PM2.5 and PM10 levels in the Sacramento area.  相似文献   

10.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

11.
12.
Abstract

Acidic sulfate concentrations were measured in metropolitan Philadelphia during the summers of 1992 and 1993, as part of a continuing effort to characterize particle concentrations in urban environments. Sampling was performed simultaneously at eight sites located within and around metropolitan Philadelphia. Sites were selected based on their population density and on their distance and direction from the city center. Air pollution sampling was conducted every other day during the summer of 1992 and every day during the summer of 1993. All samples were collected for 24-h periods beginning at 9 a.m. (EDT). All acidic sulfate and ammonia samples were collected using modified Harvard-EPA Annular Denuder Systems (HEADS).

In this paper, we examine the spatial variation in acidic sulfate and ammonia concentrations within the metropolitan Philadelphia area. We also identify factors that may influence their variation and develop models to predict their concentrations. Outdoor sulfate (SO4 2?) concentrations were uniform within metropolitan Philadelphia; however, aerosol strong acidity (H+) concentrations varied spatially. This variation generally was independent of wind direction, but was related to local factors, such as the NH3 concentration, population density, and distance from the center of the city. Physico-chemical models, which were developed using data collected during the summer of 1992, were excellent predictors of 24-h and mean summertime H+ concentrations measured during the summer of 1993. Models accounted for 78% of the variation in 24-h H+ levels. Results suggest that a single stationary ambient (SAM) monitor would be sufficient to estimate SO4 2? exposures for populations living in Philadelphia. For H+, however, multiple monitoring sites or models should be used to determine the outdoor H+ exposures of populations living in urban environments, although a single SAM site may provide an excellent index of H+ variation over time.  相似文献   

13.
ABSTRACT

Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5μm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals.

Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors.

This paper describes a preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 um were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 um is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

14.
Abstract

The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA’s Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days may be appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

15.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

16.
ABSTRACT

Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to par-ticulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be  相似文献   

17.
18.
ABSTRACT

In recent years, scientific discussion has included the influence of thermodynamic conditions (e.g., temperature, relative humidity, and filter face velocity) on PM retention efficiency of filter-based samplers and monitors. Method-associated thermodynamic conditions can, in some instances, dramatically influence the presence of particle-bound water and other light-molecular-weight chemical components such as particulate nitrates and certain organic compounds. The measurement of fine particle mass presents a new challenge for all PM measurement methods, since a relatively greater fraction of the mass is semi-volatile.

The tapered element oscillating microbalance (TEOM) continuous PM monitor is a U.S. Environmental Protection Agency (EPA) PM10 equivalent method (EQPM-1090-079). Several hundred of these monitors are deployed throughout the United States. The TEOM monitor has the unique characteristic of providing direct PM mass measurement without the calibration uncertainty inherent in mass surrogate methods. In addition, it provides high-precision, near-real-time continuous data automatically. Much attention has been given to semi-volatile species retention of the TEOM method.

While using this monitor, it is desirable to maintain as low an operating temperature as practical and to remove unwanted particle-bound water. A new sample equilibration system (SES) has been developed to allow conditioning of the PM sample stream to a lower humidity and temperature level. The SES incorporates a special low-particle-loss Nafion dryer. This paper discusses the configuration and theory of the SES. Performance results include high time-resolved PM2.5 data comparison between a 30 °C sample stream TEOM monitor with SES and a standard 50 °C TEOM monitor. In addition, 24-hr integrated data are compared with data collected using an EPA PM2.5 Federal Reference Method (FRM)-type sampler. The SES is a significant development because it can be applied easily to existing TEOM monitors.  相似文献   

19.
Abstract

Air samples of particulate matter (PM) with an aerodynamic diameter less than 10 µm (PM10) were collected from six sites in Bangkok, Thailand, using high-volume air samplers. Daily samples were taken at intervals of 12 days from November 1999 to November 2000. Size-selected sampling using a multislit Andersen size-fractionated cascade impactor was undertaken at one site in central Bangkok to identify particulate size distribution. The annual average PM10 concentration at all six sites exceeded the Thailand National Ambient Air Quality Standard (NAAQS) of 50 µg/m3. The daily PM10 concentrations at heavy traffic roadside areas ranged between 30 and 160 µg/m3. The highest PM10 level occurred during the winter period (November–February), which is the dry season. From our results, which are based on a 1-yr survey, it can be observed that the particulate concentrations are associated with traffic volumes and seasonal factors (temperature and rainfall). The relative importance of size fractions in contributing to PM load is presented and discussed. Twenty polycyclic aromatic hydro-carbons (PAHs) associated with PM have been identified and quantified. The summed PAHs based on the 20 species had an average concentration of 60 ng/m3. Benzo(e)pyrene, indeno(123cd)pyrene, and benzo(ghi)perylene were the major compounds with average concentrations of 8, 10, and 13 ng/m3, respectively. Results indicate that more than 97% of PAHs were found in the small particulate size range of <0.95 µm.  相似文献   

20.
Abstract

Data from the U.S. Environmental Protection Agency's Aerometric Information Retrieval System (now known as the Air Quality System) database for 1999 and 2000 have been used to characterize the spatial variability of concentrations of particulate matter with aerodynamic diameter ≤2.5 μg (PM2.5) in 27 urban areas across the United States. Different measures were used to quantify the degree of uniformity of PM2.5 concentrations in the urban areas characterized. It was observed that PM2.5 concentrations varied to differing degrees in the urban areas examined. Analyses of several urban areas in the Southeast indicated high correlations between site pairs and spatial uniformity in concentration fields. Considerable spatial variation was found in other regions, especially in the West. Even within urban areas in which all site pairs were highly correlated, a variable degree of heterogeneity in PM2.5 concentrations was found. Thus, even though concentrations at pairs of sites were highly correlated, their concentrations were not necessarily the same. These findings indicate that the potential for exposure misclassification errors in time-series epidemiologic studies exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号