首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.  相似文献   

2.
One of the most important considerations in baghouse operation is the effect of bag failure on outlet loading. This information would be Of use to equipment manufacturers, users, and regulatory officials. Unfortunately, little information is available in the literature on this aspect of baghouse performance. Equations describing changes in outlet loading resulting from the sudden rupture of one or more bags are developed from first principles. Calculated results from these equations are presented in the form of a chart which can very quickly and simply be used to obtain a numerical value for a revised outlet loading resulting from bag failure(s) for a variety of system conditions. Due to an assumption made in the derivation, the new outlet loading thus obtained represents the maximum increase (worst case conditions) to be expected from the rupture of one or more bags. The following variables are included in the analysis: inlet loading, outlet loading (prior to bag failure), number of bag failures, bag diameter, system pressure drop; and gas temperature.  相似文献   

3.
In advanced electrostatic stimulation of fabric filtration (AESFF), a high voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric field alters the dust deposition pattern within the bag, yielding a much lower pressure drop than that found in a conventional bag. Pilot plant results show that AESFF bags can operate with a rate of pressure loss that is 70 percent below that for conventional bags. The presence of the electric field also affects the aging characteristics of the AESFF bags. On the average, the AESFF bags had residual drags that were 10 percent below those of conventional bags. The results show that AESFF baghouses can yield the same pressure drop performance as conventional baghouses while operating at much higher air-to-cloth ratios. An economic analysis evaluated the capital, operating, and maintenance costs for electric utility plants ranging from 200 to 1,000 MW. For AESFF baghouses the capital cost was found to be 25 to 48 percent below that of a conventional baghouse. A lifetime cost analysis predicts a net present value for an AESFF baghouse that is 10 to 30 percent below that of a conventional baghouse.  相似文献   

4.
Abstract

The cumulative years of service of baghouses in the electric utility industry have doubled since the last industrywide review of their operating performance. We have gathered information from all 102 operating baghouses to develop an updated record of how this technology continues to serve the electric utility industry. In general, baghouse performance has met or exceeded the expectations for controlling emissions. There are, however, wide ranges of pressure drop and bag life performance. Most operators report a long-term trend of increasing pressure drop. The life expectancy of filter bags averages 7.5 years, with more than 20% of the population achieving more than 10 years of bag life. Factors such as coal and ash properties certainly affect baghouse operation, but another reason for variations in bag life is the lack of an optimized protocol for controlling the long-term buildup of residual dustcake. We conclude that many baghouses could operate with lower pressure drop and longer bag life by optimizing the cleaning system. Dustcake weight or drag are better indicators of performance than pressure drop and should be used to develop an optimum baghouse operating protocol.  相似文献   

5.
Abstract

In recent years, the utility industry has turned to bag-houses as an alternative technology for particulate emission control from pulverized-coal–fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

6.
In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

7.
Abstract

This investigation studied the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide, (SO3) concentrations and consequently stack opacity at the University of Missouri-Columbia power plant. The opacity was due to sulf uric acid mist forming at the stack from high SO3 concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO3 reduces the sulfuric acid mist and consequently the opacity. To reduce SO3 concentrations, dry hydrated lime is periodically injected into the flue gas upstream of a baghouse and downstream of an induced draft fan. The hydrated lime is transported downstream by the flue gas and deposited on the filter bags in the baghouse forming a filter cake. The reaction between the SO3 and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO3 concentration and has reduced the opacity to acceptable limits. Low capital equipment requirements, low operating cost, and increased bag life make the system very attractive to industries with similar problems.  相似文献   

8.
Pulse-jet filter cleaning is ineffective to the extent that collected dust redeposits rather than falls to the hopper. Dust tracer techniques were used to measure the amount of redeposition in a pilot scale pulse-jet filter. A mathematical model based on experimental results was developed to describe dust transfer from bag to bag, redeposition on the pulsed bag itself, and migration to the dust hopper. Dust redeposition upon the pulsed bag increased markedly with increasing filtration velocity, whereas migration and redeposition on bags adjacent to the pulsed bag decreased. For high velocity pulse-jet filters to operate at lowest possible pressure drop, filter cake redeposition must be minimized.  相似文献   

9.
At the Monticello station, operated by the Texas Utilities Generating Company, lignite coal obtained locally in Titus and Hopkins Counties fuels each of the three units. Units 1 and 2 are identical 575-MW Combustion Engineering (CE) boilers, each of which discharges its effluent to a 36- compartment shake/deflate cleaned baghouse paralleled with four electrostatic precipitators (ESP). Unit 3 is a larger boiler and is followed by an ESP and a scrubber. The Unit 1 and 2 baghouses were designed to clean 80 percent of the flue gas. Since startup, these baghouses have regularly experienced flange-to-flange pressure drops in excess of 10 in. H2O, with large opacity spikes caused by ash bleeding through the bags after compartment cleanings. Because of higher-than-expected pressure drop, the baghouses receive only about 45-50 percent of the flue gas. Analysis has shown the Monticello lignite ash significantly differs from most other coal ashes. Testing has shown that the Monticello ash is not filtered effectively by many "standard" bag materials. However, this testing indicates that there are fabrics that show promise of eliminating the ash bleedthrough with little pressure drop penalty. Testing has also shown that injection of low concentrations (10-15 ppm) of ammonia (NH3) into the flue gas significantly decreases ash bleedthrough, so that with NH3 injection "standard" bag materials may perform adequately. Currently, fullcompartment testing of four fabrics, with and without NH3 injection, is under way at the Unit 1 baghouse. The research conducted at the Monticello station is reviewed in this paper and the encouraging results from the full-compartment tests are presented.  相似文献   

10.
The concept of electrostatic stimulation of fabric filtration (ESFF) has been investigated at pilot scale. The pilot unit consisted of a conventional baghouse in parallel with an ESFF baghouse, allowing direct comparison. All results reported in this paper are for pulse-cleaned bags in which the electric field was maintained parallel to the fabric surface. The performance of the ESFF baghouse has been superior to the parallel conventional baghouse by several measures. The ESFF baghouse demonstrated: (1) a reduced rate of pressure drop increase during a filtration cycle, (2) lower residual pressure drop, (3) stable operation at higher face velocities, and (4) improved particle removal efficiency. These benefits can be obtained with only minor modifications to conventional pulse-jet hardware and at low electrical power consumption. The indicated ability to operate at increased face velocities with only modest expenditure for electrical hardware leads to very favorable economic projections.  相似文献   

11.
12.
This paper describes some technical and economic aspects of the nahcolite ore injection process for the simultaneous removal of fly ash and sulfur oxides from stack gases. The process is capable of removing greater than 99% of the particulate matter and greater than 70% of the sulfur oxides present in such gases. In the process, nahcolite ore, a naturally occurring material containing 70 to 90% sodium bicarbonate, is ground to 90% passing through —200 mesh screens. Approximately 20% of the ground ore is used to precoat the filter bags in a baghouse filter while the remainder of the material is fed into the flue gas Just ahead of the baghouse. The flue gas is drawn through the baghouse by induced draft fans and sent up the stack. Most of the SO2 and practically all of the fly ash in the flue gas can be removed as the gas passes through the filter bags. The spent nahcolite ore and fly ash are collected and conveyed to waste disposal as landfill, or alternatively processed for insolubilization by coprecipitation prior to landfilling. The technical feasibility of the process has been demonstrated in both bench scale and pilot scale engineering studies. Economic analyses performed for the cases of plants located in the midwest and southwest indicate lower capital costs for the nahcolite injection process when compared to wet scrubbing. On an annual cost basis, the nahcolite ore Injection process is comparable in cost to wet scrubbing for the case of the southwestern power plant, and somewhat more expensive for the case of the midwestern plant.  相似文献   

13.
Experiments were conducted to investigate the appearance of contaminants in fluorocarbon-film bags which have been widely used as photochemical reactors and storage containers in air pollution research. Clean air stored in such bags was gradually contaminated by a wide range of heavy hydrocarbons (≥ C5 ) as well as by nitrogen oxides. Warming a bag dramatically increased the contamination rate for hydrocarbons. The substances observed in the bags appear to have originated in the air outside the bags and appeared in the bags due to the permeability of the film. When a bag was stored in a controlled clean environment, the rate of contamination by hydrocarbons was dramatically reduced. Experiments in which high concentration mixtures of hydrocarbons and nitrogen oxides were stored in the bags likewise showed that some high molecular weight hydrocarbons as well as NO and NO2 permeate through the bag walls. Decontamination of the bags can be accomplished by storing them in a clean environment.  相似文献   

14.
Performance data for fabric filters using either woven or felt bags can be better understood when fault processes such as pinhole bypass and seepage are considered. Penetration straight through the dust cake and fabric may not be important by comparison. Observed trends of increased penetration with increased filtration velocity, constant or slightly increased penetration with increasing particle diameter, and constant penetration with additional dust loading can be explained by fault processes. The pulse-jet experimental work described here, done over many filtration and cleaning cycles, shows that penetration increases substantially with increasing filtration velocity and that this increase is due entirely to seepage.  相似文献   

15.
This is the second of a two-part article that reviews baghouse filtration theory, presents size estimating methods, and gives costing procedures for a variety of baghouse types and sizes. Part I of the article discussed theory and sizing; this part presents costing. Information is given for estimating total capital investment including separate costs for the bare baghouse (five types), bags, and, where needed, cages and Venturis. Factors are given for installation and for indirect costs. Direct and indirect annual costs are discussed. An example problem is given. The material in this article is taken primarily from the EAB Control Cost Manual.  相似文献   

16.
A pleated filter bag is often used to treat exhaust gas in many industrial applications, due to its fairly high dust collection efficiency and relatively low pressure drop. This work deals with the optimum pleating geometries of a pleated filter made with a newly developed PTFE/glass composite filter. It was found that pleating geometries, including pleat height and pleat pitch, directly affect the cleaning efficiency. The design index, α, which stands for the ratio of pleat height to pleat pitch, is 1.48 for optimum operation. When the α value was higher than 1.48, the pressure drop across the pleated filter medium increased, resulting in a decreased cleaning interval due to the difficulty of filter cleaning. Therefore, it is necessary that the optimum pleating geometry should be determined by employing the dimensionless parameter, α, in the design of cartridge filters.

Implications: A pleated filter bag is often used to treat exhaust gas in many industrial applications due to its fairly high dust collection efficiency and relatively low pressure drop. The present paper introduces an optimum design configuration to make a pleated filter with newly developed PTFE/glass composite filter media. A dimensionless parameter that is the ratio of pleat height to pleat pitch should be considered to make the best quality pleated filter.  相似文献   

17.
This is the third in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper provides an overview of the design and operating characteristics of baghouses now in place in the utility industry. In addition, it discusses three key issues in design and operation: the relationships among dust cake weight and chemical composition, air-to-cloth ratio, and pressure drop; fabric selection; and bag life.  相似文献   

18.
针对实际运行过程中,袋式除尘器滤袋使用寿命短,压力损失过大的问题,本文以翼形上进风袋式除尘器为研究对象,采用CFD(computational fluid dynamics)技术模拟分析不同滤袋数(分别为92、88、84、80、76和72)时袋式除尘器内气流分布和压力损失规律。主要考察了流量分配系数、最大流量不均幅值、气流迹线、滤袋表面速度分布与压降等指标。结果表明,滤袋数为76个时,气流分布最为均匀,各滤袋负载均衡;相同过滤速度下,装置的压降随滤袋数目的增加而上升,即压降大小顺序为9288847672;与72个滤袋相比,76个滤袋的可用过滤面积更大。综合考虑,袋式除尘器的最优滤袋数目为76个。模拟结果为袋式除尘器的设计和优化提供了依据。  相似文献   

19.
Abstract

The overall objective of this project was to determine the cost and impacts of Hg control using sorbent injection into a Compact Hybrid Particulate Collector (COHPAC) at Alabama Power’s Gaston Unit 3. This test is part of a program funded by the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the costs of controlling Hg from coal-fired utility plants that do not have scrubbers for SO2 control. The economics will be developed based on various levels of Hg control.

Gaston Unit 3 was chosen for testing because COHPAC represents a cost-effective retrofit option for utilities with existing electrostatic precipitators (ESPs). COHPAC is an EPRI-patented concept that places a high air-to-cloth ratio baghouse downstream of an existing ESP to improve overall particulate collection efficiency. Activated carbons were injected upstream of COHPAC and downstream of the ESP to obtain performance and operational data.

Results were very encouraging, with up to 90% removal of Hg for short operating periods using powdered activated carbon (PAC). During the long-term tests, an average Hg removal efficiency of 78% was measured. The PAC injection rate for the long-term tests was chosen to maintain COHPAC cleaning frequency at less than 1.5 pulses/bag/hr.  相似文献   

20.
Pulse-jet fabric filters rely on the filtration of dirty flue gas by the outside surface of the bags, which are then cleaned by a shock wave generated by an air pulse entering each bag from the top. As it travels down the length of the bag, the shock wave flexes the fabric and dislodges the dust cake. Enhancement of the pulse may be achieved by using a venturi, and cleaning may be on-line or off-line. This paper summarizes the results of an exhaustive study conducted for the Electric Power Research Institute to provide a convenient and versatile information base about the use of pulse-jet fabric filters on coal-fired boilers. Predominant features of the many pulse-jet installations identified by vendor survey and literature survey are shown in graphical and tabular form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号