首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

2.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

3.
The experimental results of the measurements of the explosion pressure and rate of explosion pressure rise as a function of molar methane concentration in the mixture with air in the 40 dm3 explosion chamber are presented. The research was aimed at determination of the explosion limits, according to the EU Standard. The influence of initial temperature of the mixture (changing in the range of 293–473 K) on the fundamental explosion parameters was also investigated. The ignition source was an induction electrical spark of the power equal to approximately 10 W. It was stated, that the increase of initial temperature of the methane-air mixture causes a significant increase of the explosion range.  相似文献   

4.
Research Mining Institute, Inc., Ostrava-Radvanice, in cooperation with Dept. of Theory And Technology of Explosives of University of Pardubice and Klokner Institute of CTU in Prague, has performed three series of experiments examining methane–air mixture explosions and their impact on 14 and 29 cm thick wall. The project was named ‘Modeling Pressure Fields Effects on Engineering Structures During Accidental Explosions of Gases in Buildings’ and was sponsored by Grant Agency of Czech Republic (project No. 103/01/0039). The project is aimed at deeper understanding of pressure field effect upon the structures. Methane-air mixture explosion was used to generate the blast wave. The geometrical configuration of the environment resembled a room of an average size, such as larger kitchen. Preliminary simulations were made by AutoReaGas code (Century Dynamics and TNO). The design phase was followed by tests in an experimental mine in Stramberk. Two masonry dams were build in the mine, with cross-section areas of 10.2 m2 and longitudinal distance of 5.7 m, creating an explosion chamber with a volume of 58 m3. Two vent openings with an adjustable free cross-section were used to control the maximum overpressure inside the chamber. The concentration of methane-air mixture was approximately 9.5% (vol.) and the volumes of the clouds were 5.25, 10.2 and 15.3 m3 respectively. The generated blast wave overpressures inside the chamber ranged between 1 and 150 kPa. According to experimental results a calibration of the code was performed. After the calibration it is possible to make relatively accurate simulations in similar geometry and to calculate the pressure loading of the structure at any spot in the simulated space. This paper describes the experiments performed and compares experimental and computational results.  相似文献   

5.
Experiments have been conducted to gain insight into the credibility of sparging aqueous solutions as an electrostatic ignition hazard for sensitive hydrogen/air or fuel/oxygen mixtures (Minimum Ignition Energies of ∼0.017 mJ and ∼0.002 mJ, respectively, compared to ∼0.25 mJ for hydrocarbon/air mixtures). Tests performed in a 0.5 m3 ullage produced electric field strengths between 125 and 560 V m−1 for air flows of 5–60 l min−1, respectively, comprised of 2–4 mm diameter bubbles. Field strength can be related to the space charge and fitting to an exponential accumulation curve enabled the charge generation rate from the air flows to be estimated. This was observed to be directly proportional to the air flow and its magnitude was consistent with literature data for bubble bursts. The charge accumulation observed at laboratory scale would not be a cause for concern. On the basis of a simple model, the charge accumulation in a 27 m3 ullage was predicted for a range of air flows. It is apparent from such calculations that ignition of hydrocarbon/air mixtures would not be expected. However, it would seem possible that field strengths might be sufficient to cause a risk of incendive spark or corona discharges in moderately sized vessels with sensitive flammable mixtures.  相似文献   

6.
Explosibility studies of hybrid methane/air/cork dust mixtures were carried out in a near-spherical 22.7 L explosibility test chamber, using 2500 J pyrotechnic ignitors. The suspension dust burned as methane/air/dust clouds and the uniformity of the cork dust dispersion inside the chamber was evaluated through optical dust probes and during the explosion the pressure and the temperature evolution inside the reactor were measured. Tested dust particles had mass median diameter of 71.3 μm and the covered dust cloud concentration was up to 550 g/m3. Measured explosions parameters included minimum explosion concentration, maximum explosion pressures and maximum rate of pressure rise. The cork dust explosion behavior in hybrid methane/air mixtures was studied for atmospheres with 1.98 and 3.5% (v/v) of methane. The effect of methane content on the explosions characteristic parameters was evaluated. The conclusion is that the risk and explosion danger rises with the increase of methane concentration characterized by the reduction of the minimum dust explosion concentration, as methane content increases in the atmosphere. The maximum explosion pressure is not very much sensitive to the methane content and only for the system with 3.5% (v/v) of methane it was observed an increase of maximum rate of pressure rise, when compared with the value obtained for the air/dust system.  相似文献   

7.
Volatile organic compounds (VOCs) are easily evaporated and discharged from everywhere into the atmosphere, especially in various operations of gasoline. The emission of VOCs is always a significant environmental problem, and the control of VOCs pollution has been a hot topic in the field of air purification. In this paper, the condensation separation method for gasoline vapor recovery was investigated and four gasoline vapors of S1–S4 were selected for the sensitivity analysis and optimization of the condensation process, using the Model Analysis Tools from Aspen Plus. Generally, to control VOCs pollution efficiently, both the vapor recovery efficiency and the outlet vapor concentration of the condensation recovery system should be simultaneously considered. Then an optimized three-stage condensation process was proposed, whose condensation temperatures were optimized and designed at 1 °C, −40 °C and −110 °C, respectively. Further, based on the comprehensive consideration of both meeting the more strict VOCs emission standard and ensuring the condensation recovery system work stably and economically, it was recommended that the maximum total vapor recovery efficiencies for S1–S4 should be 99.73%, 99.79%, 99.82% and 99.19%, and the minimum outlet vapor concentrations be 2.87 g/m3, 2.75 g/m3, 3.04 g/m3 and 16.98 g/m3, respectively. Accordingly, the condensation temperature of the copious cooling stage should be set at −130 °C. Moreover, the total cooling duties for the single-stage and three-stage condensation processes were investigated and compared when the condensation temperature of the recovery system ranged from 20 °C to −110 °C. The total cooling duties of the three-stage condensation process for S1–S4 would be saved by 12.23%, 15.68%, 13.96% and 15.65%, respectively. Finally, a three-stage condensation system was developed for the industrial gasoline vapor recovery, which has performed well since its installation.  相似文献   

8.
Experimental investigations were done in the paper for the process of venting explosion in a ϕ200 mm×400 mm cylindrical vessel. Compared with the normal venting process, the phenomenon of external explosion was observed and discussed first. Moreover, when CH4–air mixture gases were used and the vent diameter was 55 mm, three kinds of condition were selected: ϕ=0.8, ϕ=1.0 and ϕ=1.3. And two ignition positions were selected: at the vessel center and at the bottom. Then the venting processes influenced by these factors were experimented and discussed, too.  相似文献   

9.
Explosibility of polyurethane dusts produced in the recycling process of refrigerator and the ways to prevent the dust explosion were studied. In recent years, cyclopentane is often used as the foaming agent and this produces explosive atmosphere in the shredding process. The minimum explosive concentration of polyurethane dust, influence of coexisting cyclopentane gas on the explosibility, effect of relative humidity on the minimum explosive concentration of polyurethane dusts, the minimum ignition energy, influence of cyclopentane mixture on the explosion severity, etc. were investigated.The minimum explosive dust concentration decreased with the increase of cyclopentane concentration and increased with the increase of relative humidity. The minimum ignition energy was about 11 mJ. The ignition energy decreased with the increase of the cyclopentane gas concentration. The cyclopentane gas concentration up to about 5300 ppm did not influence too much on the explosion index (Kst) and maximum explosion pressure. From these, it would be a good way to increase the relative humidity and to regulate the cyclopentane concentration in the shredding process to prevent the dust explosion hazard.  相似文献   

10.
The paper outlines an experimental study on influence of the spark duration and the vessel volume on explosion parameters of premixed methane–air mixtures in the closed explosion vessels. The main findings from these experiments are: For the weaker ignition the spark durations in the range from 6.5 μs to 40.6 μs had little impact on explosion parameters for premixed methane–air mixtures in the 5 L vessel or 20 L vessel; For the same ignitions and volume fractions of methane in air the explosion pressures and the flame temperatures in both vessels of 5 L and 20 L were approximately the same, but the rates of pressure rises in both vessels of 5 L and 20 L were different; The explosion indexes obtained from the measured pressure time histories for both vessels of 5 L and 20 L were approximately equal; For the weaker ignition with the fixed spark duration 45 μs the ignition energies in the range from 54 mJ to 430 mJ had little impact on the explosion parameters; For the same ignition and the volume fractions of methane in air, the vessel volumes had a significant impact on the flame temperatures near the vessel wall; The flame temperatures near the vessel wall decreased as the vessel volumes increased.  相似文献   

11.
A study of explosions in several elongated cylindrical vessels with length to diameter L/D = 2.4–20.7 and ignition at vessel's bottom is reported. Ethylene–air mixtures with variable concentration between 3.0 and 10.0 vol% and pressures between 0.30 and 1.80 bara were experimentally investigated at ambient initial temperature. For the whole range of ethylene concentration, several characteristic stages of flame propagation were observed. The height and rate of pressure rise in these stages were found to depend on ethylene concentration, on volume and asymmetry ratio L/D of each vessel. High rates of pressure rise were found in the early stage; in later stages lower rates of pressure rise were observed due to the increase of heat losses. The peak explosion pressures and the maximum rates of pressure rise differ strongly from those measured in centrally ignited explosions, in all examined vessels. In elongated vessels, smooth p(t) records have been obtained for the explosions of lean C2H4–air mixtures. In stoichiometric and rich mixtures, pressure oscillations appear even at initial pressures below ambient, resulting in significant overpressures as compared to compact vessels. In the stoichiometric mixture, the frequency of the oscillations was close to the fundamental characteristic frequency of the tube.  相似文献   

12.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

13.
Fiber optic systems are being deployed in locations where explosive gas atmospheres are normally present or are present under fault conditions. The National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory (NIOSH, PRL) conducted a study of laser safety in potentially flammable environments. Researchers conducted experiments to estimate the mean and standard deviation of laser powers needed to ignite 6% methane–air atmospheres using single mode optical fiber tips covered by two types of iron oxide (Fe3O4 and (FeMn)2O3) mixed with a ceramic adhesive. The iron oxides, heated by a 1064 nm continuous wave laser, ignited the methane–air mixtures at similar powers. The minimum igniting power and maximum non-igniting power (10 tests) were 407 and 350 mW, respectively, using a 62.5 μm fiber. Laser beams guided by 125 and 80 μm diameter cladding single mode fibers produced similar methane–air igniting powers. Ignition was not observed using coal particles at powers that produced ignition with the iron oxides. Threshold ignition delays using the single mode fiber were approximately proportional to the inverse square of the igniting power. Ignition delays were significantly longer than the reported activation time for a commercial fiber optic power limiter. Comparisons are made with the results of other researchers.  相似文献   

14.
During the decommissioning of certain legacy nuclear waste storage plants it is possible that significant releases of hydrogen gas could occur. Such an event could result in the formation of a flammable mixture within the silo ullage and, hence, the potential risk of ignition and deflagration occurring, threatening the structural integrity of the silo. Very fine water mist fogs have been suggested as a possible method of mitigating the overpressure rise, should a hydrogen–air deflagration occur. In the work presented here, the FLACS CFD code has been used to predict the potential explosion overpressure reduction that might be achieved using water fog mitigation for a range of scenarios where a hydrogen–air mixture, of a pre-specified concentration (containing 800 L of hydrogen), uniformly fills a volume located in a model silo ullage space, and is ignited giving rise to a vented deflagration. The simulation results suggest that water fog could significantly reduce the peak explosion overpressure, in a silo ullage, for lower concentration hydrogen–air mixtures up to 20%, but would require very high fog densities to be achieved to mitigate 30% hydrogen–air mixtures.  相似文献   

15.
The flammability envelope was experimentally determined up to the point of vapor saturation for four flammable liquids: methanol, ethanol, acetonitrile, and toluene. The experimental apparatus consisted of a 20-L spherical chamber with a centrally located 10 J fuse wire igniter. The liquid was injected and vaporized into the chamber via a septum and a precision syringe. Nitrogen and oxygen were mixed from pure components using a precision pressure gauge. Pressure versus time data were measured for each ignition test. Flammability was defined as any ignition resulting in an increase in pressure of 7% over the initial pressure, as per ASTM E 918–83. All data were obtained at an initial temperature of 298 K and 1 atm. The experimental values of the LFL agreed well with published values. Limiting oxygen concentrations (LOC) were also determined—although these were somewhat lower than published values.The calculated adiabatic flame temperature (CAFT) method was used to model the data using a threshold temperature of 1200 K. A reasonable fit of the flammability envelope was obtained, although this could be improved with a higher threshold temperature.  相似文献   

16.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

17.
The safe operation of hydrocarbon liquid-phase oxidation by air or oxygen requires the knowledge on the flammability of hydrocarbon/oxygen mixtures in both the vapor space and vapor bubbles. The latter is of particular importance in situation where pure oxygen is used as the oxidant as most bubbles are expected to be flammable and explosive. New experimental findings are presented for ignition and explosion in cyclohexane liquid under oxygen oxidation conditions. A bubble column is constructed and fitted with multiple igniters. Experiments were performed at liquid temperatures between 373.15 and 423.15 K under various flow rates of pure oxygen. Two drastic different ignition and explosion behaviors were observed. The first is a typical bubble explosion from the direct ignition of the flammable bubbles in the liquid. The explosion occurs immediate following the ignition and do not produce significant energy that endanger the system. The other is a remote, delayed ignition and explosion in the vapor space that can produce significant overpressure and endanger the system. The explosion is attributed to the ignition of flammable vapor space by active free radicals from cyclohexyl hydroperoxide decomposition. A mechanism is proposed for the remote, delayed ignition to occur in the oxidation system. It is concluded that explosion in an oxidizing, bubbly liquid is not only a likely scenario but also a severe scenario, and cyclohexane oxidation should not be carried out directly with pure oxygen and without any inerting.  相似文献   

18.
This work presents the results of the experimental characterization of the ignition sensitivity of solid inertant/combustible powders mixtures. Three inert solids (alumina, Kieselguhr, aerosil) and eleven organic powders have been considered and the following parameters have been determined: (1) the minimum ignition energy, (2) the minimum ignition temperature in cloud and (3) the minimum ignition temperature in 5 mm layer. The effects of the addition of inert solids are described and a simple model is proposed to represent the experimental results.Generally, increasing inert solid content in a powder leads to a higher minimum ignition energy as well as a higher minimum ignition temperatures in cloud and in layer. In some cases, the flammability is influenced above a threshold concentration value, which can be quite high (up to 85 wt.%). Indeed, the proposed model shows a zone below the minimum ignition concentration (MIC), which does not enable an efficient or safe inerting: either the admixed inert solid does not provide a sufficient effect, or it can even facilitate the ignition of the dust by notably improving its dispersability.The influence of key parameters such as the thermal conductivity or optical properties on the efficiency of the inerting by admixed solid need to be further assessed in a future work in view to better understand the mechanisms involved and to extend the scope to other types of oxidizable materials.  相似文献   

19.
As part of the EC funded Naturalhy project, two large scale experiments were conducted to study the hazard presented by the rupture of high pressure transmission pipelines conveying natural gas or a natural gas/hydrogen mixture containing approximately 22% hydrogen by volume. The experiments involved complete rupture of a 150 mm diameter pipeline pressurised to nominally 70 bar. The released gas was ignited and formed a fireball which rose upwards and then burned out. It was followed by a jet fire which continued to increase in length, reaching a maximum of about 100 m before steadily declining as the pipeline depressurised. During the experiments, the flame length and the incident radiation field produced around the fire were measured. Measurements of the overpressure due to pipeline rupture and gas ignition were also recorded. The results showed that the addition of the hydrogen to the natural gas made little difference to radiative characteristics of the fires. However, the fraction of heat radiated by these pipeline fires was significantly higher than that observed for above ground high pressure jet fires (also conducted as part of the Naturalhy project) which achieved flame lengths up to 50 m. Due to the lower density, the natural gas/hydrogen mixture depressurised more quickly and also had a slightly reduced power. Hence, the pipeline conveying the natural gas/hydrogen mixture resulted in a slightly lower hazard in terms of thermal dose compared to the natural gas pipeline, when operating at the same pressure.  相似文献   

20.
The effect of carbon dioxide (CO2) concentration on the ignition behaviour of hydrocarbon and CO2 gas mixtures is examined in both jets and confined explosions. Results from explosion tests are presented using a 20 l explosion sphere and an 8 m long section of 1.04 m diameter pipeline. Experiments to assess the flame stability and ignition probability in free-jets are reported for a range of different release velocities. An empirically-based flammability factor model for free-jets is also presented and results are compared to ignition probability measurements previously reported in the literature and those resulting from the present tests.The results help to understand how CO2 changes the severity of fires and explosions resulting from hydrocarbon releases. They also demonstrate that it is possible to ignite gas mixtures when the mean concentration is outside the flammable range. This information may be useful for risk assessments of offshore platforms involved in carbon sequestration or enhanced oil recovery, or in assessing the hazards posed by poorly-inerted hydrocarbon processing plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号