首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

3.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

4.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

5.
Concentrations of potentially toxic elements (PTEs As, Ba, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, Zn and Mo) in smaller than 100-μm street dust particles from Xining, a typical valley-city in northwestern China, were determined using X-ray fluorescence spectrometry, and their potential risks to local ecosystem and human health were assessed using potential ecological risk index and health risk model. The results indicate that the concentration of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, Sr, V, Zn and Mo in the smaller than 100-μm street dust particles from Xining ranges from 0.8 to 11.1, 339.4 to 767.7, 27.2 to 110.2, 185.7 to 5134.5, 15.1 to 115.2, 150.1 to 623.5, 16.8 to 74.1, 24.4 to 233.0, 169.9 to 475.7, 47.4 to 96.8, 33.1 to 231.1 and 0.2 to 4.3 mg kg?1, with an arithmetic mean of 3.6, 415.6, 50.1, 573.0, 40.6, 409.1, 22.6, 52.7, 257.8, 57.1, 108.6 and 2.5 mg kg?1, respectively. Compared to the background value of local soil, the smaller than 100-μm street dust particles from Xining have elevated concentrations of Co, Cr, Cu, Pb, Zn, Sr and Mo. The contamination levels of Ba, Co, Cr, Cu, Pb, Zn, Sr and Mo are higher than As, Mn, Ni and V. The comprehensive potential ecological risk levels of PTEs were moderate to considerable. The non-carcinogenic risks of PTEs studied on children and adults due to dust exposure are limited except for Cr to children. Cr in the dust may pose a potential health risk to children; this should draw more attention.  相似文献   

6.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   

7.
Levels of Pb, Ni, Cr, Cu, Zn, and Cd in the glass screens (GS) and printed wiring boards (PWBs) of obsolete computer monitors (OCMs) were determined by flame atomic absorption spectrophotometry (FAAS) following standard digestion. Metal concentrations (mg kg?1) in GS were in the following ranges (medians in brackets): Pb ND – 3100 (46), Cd 0.5–2.6 (0.8), Cr ND – 18.7 (3.1), and Zn 8.1–600 (37) and in PWBs (mg kg?1): Pb 34,600 ± 17,000, Cd 11 ± 9, Cr 59 ± 45, Zn 15,900 ± 7800, Cu79,000 ± 22,600, and Ni 3200 ± 2500. In GS, the levels of the six metals were lower than their total threshold limit concentrations (TTLC), except for Pb with a TTLC of 1000 mg kg?1 in 10% of the samples. In the PWBs, the TTLC of Pb and Cu (2500 mg kg?1) was exceeded many fold. For Zn (5000 mg kg?1) and Ni (2000 mg kg?1); they were exceeded by 90% and 65%, respectively. For OCMs manufactured in 2001 and later, Pb and Zn levels in GS and Cr, Zn, and Ni in PWBs were significantly reduced.  相似文献   

8.
The overall effect of the number of boats on the copper (Cu) levels in the water column and sediment, along with their spatial variability within Shelter Island Yacht Basin (SIYB), San Diego Bay, California was examined. We identified a horizontal gradient of increasing dissolved Cu and Cu in sediment from outside to the head of SIYB which was coincident with the increasing number of boats. Spatial models of Cu distribution in water and sediment indicated the presence of ‘hotspots’ of Cu concentration. From outside to the head of SIYB, dissolved Cu ranged from 1.3 μ g L?1 to 14.6 μ g L?1 in surface water, and 2.0 μ g L?1 to 10.2 μ g L?1 in bottom water. Cu in sediment exceeded the Effect Range Low of 34 mg kg?1 (i.e. where adverse effects to fauna may occur), with a peak concentration of 442 mg kg?1 at the head of the basin. Free Cu++ in surface water was several orders of magnitude higher than in sediment porewater. High-resolution data of Cu species together with probability maps presented in this paper will allow managers to easily visualise and localise areas of impaired quality and to prioritise which areas should be targeted to improve Cu-related conditions.  相似文献   

9.

The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn2+ levels and to determine the critical tissue concentration of Mn2+ deficiency during early stages of growth. The minimum Mn2+ concentration required in soil nutrient contents was 42.5 mg kg−1 for sunflower, 24.3 mg kg−1 for tobacco and 10.2 mg kg−1 for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0–65.0 mg Mn2+ kg−1, 24.9–32.1 mg Mnn+ kg−1 and 28.7 to 29.6 mg Mn2+ kg−1, respectively. Critical shoot Mn2+ concentration at early stages of growth was 53.6 mg kg−1 in sunflower, 458.0 mg kg−1 in tobacco and 193.8 mg kg−1 in triticale. Our results demonstrate that the tolerance to low external Mn2+ (triticale: <30.2 mg kg−1; sunflower: <56.2 mg kg−1; tobacco: <69.3 mg kg−1) and the critical tissue Mn2+ levels for deficiency varied significantly between crop species tested.

  相似文献   

10.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

11.
Chromium is a pollutant present in electroplating waste water and its removal is necessary for the protection of the environment. Vetiveria zizanioides (VZ) was grown in chromium effluent concentrations of 50, 100 and 200 mg kg ?1 soil amended with organic manure and the potential for phytoremediation was determined. The amounts of Cr in plant tissues (root and shoot), soil and percentage electrolyte leakage of VZ roots were analysed. From the results, VZ amended with organic manure showed the greatest potential for Cr removal because of its faster growth and larger biomass achieved over the whole length of the experiment. In this study, 92.25% Cr removal efficiency was obtained with a Cr concentration of 50 mg kg ?1 soil and removal efficiencies of 90.5% and 85% were obtained with 100 and 200 mg kg?1, respectively after a period of two months of VZ growth.  相似文献   

12.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

13.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   

14.
Food is the major source of metal exposure for the nonsmoking general population. Food samples of plant and animal origin from Ismailia, Egypt, were analyzed for the content of cadmium (Cd), lead (Pb), chromium (Cr), zinc (Zn), and copper (Cu) using AAS. The Cr, Zn, and Cu concentrations were in the range of 1.7–249?µg?kg?1 wet weight (ww), 2–66?mg?kg?1?ww, and 0.5–3.46?mg?kg?1?ww, respectively. The mean daily intake of Cr, Zn, and Cu was 28.9?µg day?1, 8.55?mg day?1, and 1.7?mg day?1, respectively. The intake estimates are within the range of the recommended intake established internationally. Concentrations of Cd and Pb were in the range of 10–321?µg?kg?1?ww and 31–1200?µg?kg?1?ww, respectively. The weekly dietary intake for Cd and Pb (4.02 and 20.4?µg?kg?1 b.w, respectively) is lower than the FAO/WHO PTWI. Bread is the foodstuff that provided the highest rate of Pb and Cd (62 and 46% of the daily intake) to adults in Ismailia city.  相似文献   

15.
River-bed sediments from the Pangani basin, Tanzania, were characterized for elemental compositions, following contamination risks from rapid expansions of human activities in the area. Samples were collected during two individual seasons and analyzed by high-polarizing beam energy dispersive X-ray fluorescence (EDXRF) for eight major and 14 trace elements. Evaluation of enrichment factors (EFs) was used to investigate the elemental flux and assess the contributions of natural and anthropogenic influences. The abundances of the major elements followed the order Si?>?Al?>?Fe?>?Ca?>?K?>?Ti?>?Mn?>?P, similar to that of the upper earth's crust, and were generally from the weathering of the bed-rock. The high concentrations of typical anthropogenic trace-elements (Cr??1, V??1, Ni??1, Cu??1, La??1) coupled with high EFs (>2) in some locations indicated contamination associated with agricultural and industrial activities. Factor analysis extracted five principal components that contributed to 96.0% of the total observed variance. The results indicated that river-bed sediments of the Pangani basin were influenced to a larger extent by lithogenic sources than anthropogenic impacts.  相似文献   

16.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

17.
Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg?1, with mean As concentration 64.44 mg kg?1. The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27–385.98 mg kg?1 dry weight), while the lowest was in unpolished rice (0.31–0.52 mg kg?1 dry weight). The distribution of As in rice tissue and paddy soil are as follows root ? soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg?1 dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field.  相似文献   

18.
Concentrations of eight trace metals (TMs) in road dust (RD) (particles?<?25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg?1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As?>?Pb?>?Cr?>?Mn?>?Cd?>?Zn?>?Ni?>?Cu for both children and adults.  相似文献   

19.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

20.
The concentrations and chemical distributions of heavy metals (Cd, Cr, Ni, Zn, U, and V) in the Al-Jiza phosphate ores were investigated. Typically, the mean concentration values of Cd, Cr, Ni, U, and Zn are 15 ± 8, 109 ± 21, 34 ± 6, 211 ± 55, 142 ± 55, and 161 ± 57 mg kg?1, respectively. On the other hand, the encountered average concentration values of Cd, Cr, Ni, Zn, U, and V in the phosphate dust particles (<0.053) were found to be 22 ± 5, 179 ± 5, 67 ± 11, 441 ± 14, 225 ± 58, and 311 ± 9 mg kg?1, respectively. The contamination factors of U and Cr are greater than 1, indicating that these heavy metals could be potentially hazardous, if released to the environment. Multivariate statistical analysis allowed the identification of three main factors controlling the distribution of these heavy metals and the other chemical constituents. The extracted factors are as follows: francolite mineral factor, clay minerals factor, and diagenesis factor. Health risk assessments of non-cancerous effects in finer-grained size fraction that might be caused by contamination with the heavy elements have been calculated for both children and adults. The risk assessments in case of children for non-cancerous effects showed that U has values greater than the safe level of hazard index (HI = 1). In case of adults, the value of risk for U is also higher as compared to those of Cd, Ni, Cr, and Zn where it lies within the safe range of hazard index (HI < 1). Child health risk assessment indicates that children are more vulnerable to contaminants from phosphate mining than adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号