首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了阿坝地区的岩石、饮用水、农作物及其根系土中硒的不同存在形态的分布,并结合生物有效性深入研究了硒元素分布与大骨节病病因的联系和调控机理.阿坝地区的环境(岩石、土壤、水)中全硒浓度、农作物中硒的富集系数和水溶性硒占总硒的含量均远低于非病区;硒在氧化还原条件(Eh平均值143.27 mV)和酸碱度(pH 6.51—8.48)的控制下主要以亚硒酸态的稳定形式存在.元素铝、铁等的富集可能会促进硒的沉淀和络合,制约硒的生物有效利用率,进而导致人体硒摄入不足,最终激发人类微小病毒B19(HPV B19)的毒性,引发大骨节病.通过采取土壤增施硒肥、改善水质、改变膳食结构等方法可以有效地提高环境中硒的水平及其生物有效性,以缓解大骨节病的病情及发病率.  相似文献   

2.
Now, there is a decreasing trend for the prevalence rate of Kaschin–Beck disease (KBD) in most parts of China, but the disease is still active and severe in the Tibetan Plateau for some reason. To further explore the role of selenium in the occurrence of KBD, We collected samples including drinking water, cultivated topsoil, Highland Barley grains, and tsamba in Rangtang County and Aba County, Sichuan Province and determined concentrations of selenium by Hydride Generation Atomic Fluorescence Spectrometry. Levels of selenium in the environment were analyzed in detail. Selenium in the soil–plant–food system and their relationship with prevalence rate of KBD were also discussed. The results indicate: (a) the levels of environmental selenium are very low and the study area belongs to a selenium-deficient ecological landscape; (b) the KBD becomes much more severe with decreasing environmental selenium under the selenium-deficient condition. Namely, the lower the environmental selenium is, the more severe the disease is; (c) soil selenium deficiency plays a critical role for the prevalence of local KBD, and more factors inducing selenium deficiency should be more concerned in the future.  相似文献   

3.
经对呼和浩特盆地西部深层水1000km ̄2、浅层水600km ̄2范围内进行水质检测分析,发现其深、浅两层地下水均富砷,浅水有18.8%、深水有40.9%的水样砷含量超过国家饮用水卫生标准。测得水体总砷中以三价砷为主。溶解氧含量低,铁、锰离子为痕量,硫酸盐、亚硝酸盐氮含量也均低,同时有低硒、高氟现象,提示该地区为富含有机质的强还原环境,有利于砷的迁移富集,对饮水型砷中毒起着促进作用。  相似文献   

4.
The concentration of selected inorganic chemicals was determined for 396 samples of bottled water, desalinated water, and groundwater used for drinking and domestic purposes in the United Arab Emirates (UAE). The objective of this study was to compare the concentrations of inorganic chemicals in different domestic water types used in the UAE with the World Health Organization (WHO) limits for drinking water. Results of the present study revealed a wide variation in the concentrations of major, minor, and trace inorganic chemicals in domestic water of the UAE. For example, the bottled water sold for drinking is depleted in major ions and the total dissolved solids (TDS) in some brands do not exceed 100 mg/l. On the other hand, some of the domestic water used may contain as much as 3,000 mg/l TDS, which is above the WHO recommended limit for drinking water (500–1,500 mg/l TDS). Similarly, while bottled water is almost free of trace ions and minor constituents, some natural groundwater may have concentrations higher than the WHO recommended limits for drinking water. The cause of this variation is related to the different water sources and the large number of companies producing and distributing drinking and domestic water. Moreover, it is clear that the current controls on domestic water quality in some areas, namely conformance of pH and electrical conductivity measurements with prescribed ranges of values, are currently inadequate. These two parameters are not enough to judge if water is suitable for drinking or not and some consumers may receive domestic water of uncertain quality.  相似文献   

5.
A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l−1 for arsenic and selenium, respectively; sampling frequency was 120 samples h−1 for arsenic and 160 samples h−1 for selenium. Linear ranges found were 1.54–10 μg l−1 (R = 0.999) for arsenic and 0.27–27 μg l−1 (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95–116%. Analytical precision (s r (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.  相似文献   

6.
Abandoned mines are known to contaminate private drinking water wells with toxic metals and arsenic (As). Little attention is given, however, to sites in rural areas with low population densities where natural, geogenic sources of contaminants might also occur. This study measured arsenic and trace element exposure among residents consuming water from wells adjacent to abandoned mines near Twisp, in Okanogan County, Washington, USA, estimated the risk of adverse health effects, and considered the degree of uncertainty associated with the assessed risk. Water samples were collected between October 1999 and June 2001. Average As concentrations ranged from <1 to 298 microg L(-1), lead (Pb) ranged from 0 to 94 microg L(-1), cadmium (Cd) 0-5 microg L(-1), and selenium (Se) 0-390 microg L(-1). Concentrations varied seasonally with maximum concentrations occurring in conjunction with snow-melt. The calculated risk of mortality from cancer following exposure to As at average concentrations as low as 8 microg L(-1) was greater than one in 10,000. Additional noncarcinogenic risks are associated with exposure to As, Cd, Pb and Se. A potentially affected population, estimated to be between 1000 and 1287 residents, live within a 6.5-km (4-mile) radius of the study site. This study emphasises the need to test drinking water wells in the vicinity of abandoned mines during times of maximum snow-melt to determine the extent of risk to human health. Residents drinking water from wells tested in this study who want to reduce the estimated carcinogenic risk and the noncarcinogenic hazard quotient should consider treating their water or find alternative sources.  相似文献   

7.
建立适合我国国情的饮用水水质指数   总被引:6,自引:0,他引:6  
目前一般利用各指标合格率评价饮用水水质,由于指标繁杂,不利于消费者了解水质整体概况,也不利于对外发布公报。本文建议采用水质指数法来对饮用水水质进行综合评价。本文介绍了目前采用的水质指数的不同评价方法,综述了不同的水质指数的原理和计算方法,根据我国国情,对我国城市供水的饮用水水质指数进行了修正,首次在水质指数中增加了超标项目“惩罚项”。修正后的饮用水水质指数具有很强的科学性和可操作性,可以从整体上对饮用水水质进行综合评价。  相似文献   

8.
郑州市农村饮用水安全评价   总被引:2,自引:0,他引:2  
通过对郑州市农村饮用水安全进行了较为详细的评价.此次评价工作首先对全市每个行政村、自然村、自然片的饮水水源、饮水困难情况等进行了调查和水质抽检,共布设水质取样点255个.评价结果为:郑州市总人口为4 174 866人,饮水不安全人数为1 540 359人,占农村总人口的38.03%.饮水不安全主要是由饮用水水质引起的,包括氟水、苦咸水和污染水.水量、用水方便程度、供水保证率对其有一定的影响,但作用比较小.表2,参5.  相似文献   

9.
广州市饮用水中挥发性有机物的研究   总被引:1,自引:0,他引:1  
饮用水中的挥发性有机化合物(VOCs)来源于水源水受到的环境污染或是在净化消毒工艺处理工程中反应产生的副产物,可对人体健康造成极大的危害。改革开放以来,广州人口和经济得到突飞猛进的发展,也带来了包括饮用水安全在内的诸多严重的社会和环境问题。虽然饮用水中VOCs的研究已经得到越来越多的重视,但是目前对广州市饮用水中挥发性有机物的研究还鲜有报道。本文在广州市中心城区选取15个不同位置的采样点进行了自来水水样采集,并利用吹扫-捕集-气相色谱-质谱(GC-MS)联用系统分析技术测定水中 VOCs 的种类和三卤甲烷的质量浓度。结果表明,广州市中心城区的自来水中VOCs有20种,以三卤甲烷(THMs)和芳香烃类为主,占了所检出的物质总量的78%以上。THMs中四种化合物(氯仿、一溴二氯甲烷、二溴一氯甲烷、溴仿)的检出率达100%,总三卤甲烷的平均质量浓度为46.46μg· L-1,最大值为53.31μg· L-1,最小值39.91μg· L-1。根据2006版国家饮用水标准,四种三卤甲烷质量浓度均低于标准限值,符合标准要求。对市面上一般的瓶装水的研究发现,瓶装水中三卤甲烷的质量浓度非常低,总三卤甲烷平均质量浓度仅为1.47μg·L-1,约是自来水中质量浓度的1/30。为了解温度及煮沸对自来水中 THMs 质量浓度的影响,本研究设计了实验进行探究。结果发现加热至沸腾过程中,THMs质量浓度随温度升高而升高,而沸腾后THMs骤降,煮沸5 min可降低水中约95%的THMs,接近瓶装水中THMs质量浓度。  相似文献   

10.
城市水样中首次检出痕量硝基多环芳烃(NO2—PAH)   总被引:6,自引:0,他引:6  
马明生  康致泉 《环境化学》1994,13(6):543-549
本文利用还原衍生化高分辨GC-ECD法,采用双柱定性首次在城市地表水样中检出环境潜在致癌物-硝基多环芳烃(NO2-PAH),结果表明,在不同的水样中共检出包括动物致癌物2-硝基萘在内的八种NO2-PAH。河水和饮用水中均有ppt级NO2-PAH存在,其中溶解度较大的两环硝基多环芳烃的含量高于三环以上的。饮用水中NO2-PAH的浓度低于与其相邻的河水中相应硝基多环芳烃的含量,经煮沸处理后,饮用水中N  相似文献   

11.
Associations between the concentration of arsenic naturally occurring in drinking water and the development of skin lesions in people have been documented for some years at various locations around the world. Data on the exposure-response relationship between concentrations of arsenic in drinking water and prevalence of skin lesions in farmers from five locations in Inner Mongolia, China have been collected from the original publications and re-analysed together as a meta-study. The calculated data show a positive linear exposure-response relationship without a threshold. The reasons for this linear correlation are discussed and compared with the data from Xinjiang, another arsenism area located in a different geographical area of China. Here a different relationship was recorded that involved a threshold concentration before skin lesions developed. The significance of these two different exposure-response scenarios is discussed.  相似文献   

12.
In this study, fluorine concentrations in drinking water and in urine of residents from a fluorine exposure area in China were tested. DMFT (average number of decayed, missing and filled teeth) of local residents in four age groups were also determined. The results of the study indicate that in fluorine exposure areas, there is a strictly positive correlation between fluorine content in urine and the fluorine content in drinking water. Effect of dental caries by high fluorine content drinking water is different for the different age groups. High fluorine content drinking water is more dangerous for 15-and 18-year-old groups than 5- and 12-year-old groups.  相似文献   

13.
The west plain region of Jilin province of northeast China is one of the typical endemic fluorosis areas caused by drinking water for many years. Investigations of hydrogeological and ecoenvironmental conditions as well as endemic fluorosis were conducted in 1998. Results show that the ground water, especially, the water in the unconfined aquifer is the main source of drinking water for local residents. The fluoride concentration in groundwater in the unconfined aquifers is higher than that in the confined aquifer in the west plain of Jilin province. The fluoride concentration in the unconfined aquifer can be used to classify the plain into fluoride deficient area, optimum area and excess area, which trend from west to east. High fluoride (>1.0 mg L(-1)) in drinking water resulted in dental and skeletal fluorosis in local residents (children and pregnant women). There exists a positive correlation between fluoride concentration in the drinking water and the morbidities of endemic fluorosis disease (r1 = 0.781, r2 = 0.872). Health risks associated with fluoride concentration in drinking water are assessed. It has been determined that fluoride concentration in excess of 1.0 mg L(-1) exposes residents to high health risks based on risk identification. The study area is classified into five health risk classes as shown in Figure 4. The risk indexes of this area more than 1.0 are accounted for 68% of the total west plain region.  相似文献   

14.
Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than international guidelines assume. These findings point to the need for regulators to reinforce the guidance on drinking water quality standards to private water supply users, and the benefits to long-term health of complying with these, even in areas where treated mains water is widely available.  相似文献   

15.
The drinking water treatment plant (WTP) in Irsch-Treves is one of the WTPs operated by the Public Utility Company of Treves (SWT) responsible for supplying the city of Treves with drinking water. This treatment plant has been responsible for the treatment of raw, soft water from the oligotrophic reservoir Riveris since 1958. The main functions of the WTP are the removal of particulate matter, manganese, iron, aluminium and organic material, especially humic substances. The removal of particulate matter such as bacteria, other microorganisms and plankton is very important to ensure a microbiologically and hygienically stable drinking water. Insufficient removal of particulate manganese may lead to manganese scaling in the supply system and, in extreme conditions, may lead to a brown-coloured drinking water. The so called Multi-Barrier-System is being used in the entire water treatment process. Under this system, great importance is given to the monitoring of the catchment area, the inflows, and the reservoirs. After a preliminary and subsequent sedimentation and biological treatment in the preliminary and in the main reservoirs respectively, the raw water is finally treated through flocculation filtration over the rapid multi-layer sand filters in the WTP Irsch. With this approach, only a rigid application of the above mentioned steps and the application of the latest recognized technology to maintain the supply system can best guarantee a constant supply of clean drinking water. Online particle count in raw water and in drinking water is one of the main quality control measures applied in the WTP Irsch. The conventional flocculation filtration is not always able to fulfil the increasing quality demands for drinking water, especially during adverse raw water quality conditions. This is the reason why more and more membrane filtration units are currently being installed in completely new plants, as substitutes in conventional plants, or for upgrade purposes. The SWT is currently planning an enlargement and upgrade of the WTP Irsch, integrating ultrafiltration, which was successfully tested in a pilot study. The upgrade of the elimination of particulate matter is one of the most important targets, after the enlargement and upgrade of the plant.  相似文献   

16.
In China, endemic arseniasis attributable to the geological-geochemistry environment is mainly found in the plain of the Great Bend of the Yellow River and the Hu-Bao plain in the Inner Mongolia Autonomous Region, in the Datong basin of Shanxi Province, the floodplain of the northern side of the Tian Mountain of Xinjiang Uygur Autonomous Region, and in the southwest coastal plain of Taiwan. These areas share many similar characteristics including widespread occurrences, a large population being affected, and the magnitude of risk involved. The population living in these areas is estimated to be around 5.5 × 105, of which of 2.5 × 105 are resident in Inner Mongolia. Based on our systematic research and comparison of various areas, we found the different types of arseniasis are often associated with different regions. The neural arseniasis is distributed in Xinjiang Uygur Autonomous Region and Shanxi Province, caused by inorganic arsenic in drinking water while the cycling-obstacle arseniasis is mainly found in Inner Mongolia and Taiwan, associated with organic arsenic in water. The distribution of arsenic affected villages in Inner Mongolia exhibits orientation and focus on low-lying land in the subsiding centre of the Great Bend basin, which was enriched with humus in the lake and limnetic deposits. Much CH4 gas can be detected in the water of shallow and deep wells in these villages. Some of the wells with higher concentrations of CH4 can even be ignited. This is a typical reductive geochemical environment. We tested the total amount of arsenic (As), As3+, and methyl arsenate in all types of water sources. It is found that the number of arseniasis cases is not clearly related to the total amount of arsenic (As) in the water. However, it is related to the ratio of As3+ plus methyl arsenic to the total amount of arsenic (As). The higher the ratio, the higher the number of people affected and the more serious the illness. The statistical results also indicate that good drinking water accounts for 60% of the drinking water source while the arsenic contaminated water makes up about 25% of the drinking water in the study area. This research reveals that the local geochemical environment is responsible for the spreading of the endemic arseniasis in the area and thus suggests a new direction of how to prevent such disease.  相似文献   

17.
新疆干旱地区城镇居民硒水平   总被引:1,自引:0,他引:1  
本文使用新极谱法对我国乌鲁木齐市和奎屯市的居民全血样品分别为98例和58例进行硒含量的测定,分别为75.01.442μg/1和158.741.6μg/1.乌鲁木齐市心血管疾病患者20例,血硒含量为72.31.382μg/l.乌鲁木齐市和奎屯市的水样中硒含量分别为1.71μg/l和3.02μg/l.乌鲁木齐市母乳20例,硒含量为11.83.77μg/l.  相似文献   

18.
Chlorinated phenols are either products of industrial chemical processes or the result of chlorination of drinking water. Often, the formation of chlorinated phenols is based upon naturally occurring phenol. The following chlorinated phenols have been selected for testing in the Ames‐test for their mutagenic activity: 3‐chlorophenol, 4‐chlorophenol, 2,3,6‐, 2,4,5‐, 2,4,6‐trichlorophenol, 4‐chloro‐2‐methylphenol and 4‐chloro‐3‐methylchlorophenol. The tester strains TA97, TA98, TA100 and TA104 were employed. All tested compounds produced mutagenic activity at least in one tester strain. The highest numbers of revertants were detected for 2,3,6‐ and 2,4,6‐trichlorophenol. But in contrast to the other substances, these two induced only frameshift mutations in presence of a metabolizing system. The evidence of their presence in drinking water and of their mutagenic activity makes them to a potential health hazard.  相似文献   

19.
Humans are primarily exposed to fluoride (Fl), a widespread environmental pollutant, via contaminated drinking water and foodstuffs. The aim of this study was to examine whether sodium fluoride (NaF) exerted cytotoxic effects in human hepatocarcinoma (HepG2) cells. HepG2 cells were incubated with different concentrations of NaF and reactive oxygen species (ROS) levels, cell cycle, apoptosis, and DNA damage determined. Concentration-dependent studies showed that exposure to HepG2 cells with different concentrations of NaF for 24 hr significantly decreased cell viability and intracellular antioxidant capacity. Furthermore, NaF exposure increased lipid peroxidation levels and accumulation of intracellular ROS; and lowered antioxidant glutathione concentrations. In addition to oxidative impairments, NaF treatment enhanced HepG2 cell death via apoptotic pathway as evidenced by DNA fragmentation and cell cycle arrest. Sodium fluoride treatment unregulated p53 level, and Bax and Bcl2 expression. Diminished cell viability and changes in cell cycle accompanied a rise in p53 expression.  相似文献   

20.
• 23 available research articles on MPs in drinking water treatment are reviewed. • The effects of treatment conditions and MP properties on MP removal are discussed. • DWTPs with more steps generally are more effective in removing MPs. • Smaller MPs (e.g.,<10 μm) are more challenging in drinking water treatment. Microplastics (MPs) have been widely detected in drinking water sources and tap water, raising the concern of the effectiveness of drinking water treatment plants (DWTPs) in protecting the public from exposure to MPs through drinking water. We collected and analyzed the available research articles up to August 2021 on MPs in drinking water treatment (DWT), including laboratory- and full-scale studies. This article summarizes the major MP compositions (materials, sizes, shapes, and concentrations) in drinking water sources, and critically reviews the removal efficiency and impacts of MPs in various drinking water treatment processes. The discussed drinking water treatment processes include coagulation-flocculation (CF), membrane filtration, sand filtration, and granular activated carbon (GAC) filtration. Current DWT processes that are purposed for particle removal are generally effective in reducing MPs in water. Various influential factors to MP removal are discussed, such as coagulant type and dose, MP material, shape and size, and water quality. It is anticipated that better MP removal can be achieved by optimizing the treatment conditions. Moreover, the article framed the major challenges and future research directions on MPs and nanoplastics (NPs) in DWT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号