首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

2.
Water chestnut peel, an agricultural bio-waste, was used as a biosorbent for removal of rhodamine B (RhB), basic textile dye, from an aqueous solution. The effects of various experimental parameters were studied. The equilibrium data correlated well with a Freundlich isotherm (R2 = 0.98–0.99) followed by a Halsey isotherm model (R2 = 0.98–0.99) which indicated heterogeneity of the adsorbent surface and multilayer adsorption of RhB dye onto the water chestnut peel waste (WCPW). High correlation coefficients (R2 = 0.99) together with close agreement between experimental qe (0.4–1.7 mg g?1) and calculated qe (0.4–2.5 mg g?1) suggested that the adsorption process followed pseudo-second-order kinetics, with k2 values in the range of 52–3.4 × 10?1 g mg?1 min?1 at different concentrations. The overall mechanism of adsorption was controlled by both liquid-film and intra-particle diffusions. The negative values of change in Gibb's free energy (?ΔG0 = 19.2–29.2 kJ mol?1) and positive values of change in enthalpy (ΔH0 = 30.9–117.6 kJ mol?1) revealed the process to be spontaneous and endothermic. WCPW was found to be an effective adsorbent for removal of RhB, a cationic dye, from an aqueous solution.  相似文献   

3.
The adsorption behaviour of Basic Red 12, Acid Orange 7 and Acid Blue 1 on zinc oxide nanoparticles (ZNP) has been investigated to understand the physicochemical process involved and to explore the possible use of nanoparticles in the treatment and management of textile waste matter. The dye removal capacity of ZNP towards Basic Red 12, Acid Orange 7 and Acid Blue 1 was found to be 15.64, 6.78 and 6.38 mg g?1, respectively. The adsorption process was pH dependent and optimum pH values of 9.0, 2.0 and 4.0 were obtained for Basic Red 12, Acid Orange 7 and Acid Blue 1, respectively. Equilibrium was established after 1.0 h for all dyes. Langmuir, Freundlich and Temkin isotherm models were applied to the system. The adsorbent ZNP was characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Fourier transform infrared (FTIR) techniques. SEM analysis revealed the noticeable nanoporous morphology of the material. The results of FTIR spectroscopy showed that the process is driven by an electrostatic complexation mechanism. XRD studies revealed the nanocrystalline structure of ZNP. BET surface area measurement suggested a high pore volume and large surface area for the adsorbent. The kinetic measurements suggested pseudo-second-order kinetic processes with high regression coefficients and smaller standard error of estimate values and lower residual sum of squares. The thermodynamic measurements suggested that all processes were exothermic and accompanied by negative values for Δ G0, Δ S0 and Δ H0.  相似文献   

4.
Leaf powder of spear grass, otherwise known as Imperata cylindrica (IC), was used to prepare activated carbon. The Imperata cylindrica activated carbon (ICAC) prepared was used for the removal of Congo red (CR) dye from aqueous solution. Operation parameters such as initial dye concentration, contact time, adsorbent dosage, pH, and temperature were studied in batch systems. Equilibrium was attained in 150 and 180?min at lowest and highest concentrations, respectively. Maximum adsorption was observed at pH 3. Quantum chemical studies suggested that the protonation of aniline groups and minimal molecular size at planar geometry coupled with electrostatic interaction enhances the adsorption at low pH. Adsorption data were tested using pseudo-first-order and second-order reaction kinetics; the latter was found to be more suitable with a coefficient of determination of ≥0.99. The adsorption process fits Langmuir isotherm model better than the Freundlich model, with a maximum monolayer coverage of 313?mgg?1. This study shows that ICAC is effective in removing CR dye from aqueous solutions.  相似文献   

5.
The efficiency of chir pine sawdust (CPS) for adsorptive removal of the dyes, congo red (CR) and basic violet 1 (BV), from aqueous solution was evaluated using batch and column studies. The equilibrium was attained in 60 min for CR and 45 min for BV. The adsorption of BV obeyed the Langmuir isotherm model while the Freundlich isotherm fitted the equilibrium data of CR adsorption. The Langmuir monolayer adsorption capacities (Qo) of CPS for BV and CR were 11.3 and 5.8 g kg?1, respectively. The kinetic data for CR were best fitted to the Lagergren pseudo-first-order model and for BV to the pseudo-second-order model. The intra-particle diffusion was found to be the rate-controlling step for CR adsorption, while the adsorption kinetics of BV were controlled by both intra-particle and liquid-film diffusion. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The adsorption activation energy (Ea) for CR (124 kJ mol?1) implied chemical adsorption while that for BV (5.4 kJ mol?1) indicated physical adsorption. An increase in the Thomas model constant (KTh) with increasing flow indicated that for both dyes the mass transport resistance decreased during adsorption. Thus, CPS may be an efficient low-cost adsorbent for decolorization of dye-containing wastewaters.  相似文献   

6.
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l?1), pH, contact time, and sorbent concentration (2–6 g l?1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l?1 of Cr6+ concentration on 5 g l?1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g?1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin–Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol?1 for 25 and 50 mg l?1 chromium concentration, respectively.  相似文献   

7.
Magnetic particles prepared via co-precipitation and impregnated onto wheat husk (MN-WH) were used for the removal of methyl blue (MB) from aqueous solution. Experiments were conducted in a batch mode for optimization regarding pH, contact time, adsorbent dose, initial dye concentrations, and temperature. Maximum adsorption (98%) was achieved at pH 5. The adsorption data were fitted into pseudo-first, pseudo-second, intraparticle diffusion, and Elovich equation revealing that adsorption followed pseudo-second-order kinetics. The four most common isotherm models, i.e. the Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich (D–R), were used to evaluate the data, with the best fit to a Langmuir isotherm (R2 = 0.996), followed by a Freundlich isotherm (R2 = 0.995), indicating monolayer adsorption of MB on the surface of MN-WH. Thermodynamic parameters calculated from the Van't Hoff equation revealed that the adsorption is exothermic (ΔHº = ?19.7 kJ mol?1).  相似文献   

8.
Removal of Mo(VI) from aqueous solutions was investigated using cinder modified by sulfuric acid. Various parameters such as pH, agitation time, Mo(VI) concentration, and temperature have been studied. The maximum adsorption of Mo(VI) occurred at pH between 4.0 and 6.0. Kinetic studies showed that the adsorption generally obeyed a pseudo second-order model. The activation energy was 31.4?kJ?mol?1, indicating that the adsorption process was governed mainly by interactions of physical nature. Furthermore, application of Langmuir and Freundlich isotherm models to the adsorption equilibrium data showed that the adsorption behavior obeyed the Langmuir model. The adsorption capacity was found to be 10.8?g Mo(VI)?kg?1 adsorbent. Finally, thermodynamic parameters such as ΔH 0, ΔS 0, and ΔG 0 were also evaluated, which showed that the adsorption of Mo(VI) on the treated cinder was endothermic, entropy increasing, and spontaneous. In conclusion, the sulfuric acid-modified cinder was shown to be an inexpensive, effective, and simple adsorbent for the removal of Mo(VI) from water.  相似文献   

9.
The adsorption of acid brown 75 onto kaolinite in aqueous solution was studied with respect to the pH, adsorbent dosage, contact time, initial concentration, and operating temperature. Desorption of dye from dye-saturated kaolinite was observed. Experimental data indicated that the adsorption capacity of kaolinite for the dye was higher in acidic rather than in basic solution. The maximum adsorption capacity of kaolinite towards the dye was found to be 96.5 mg g?1 (pH 1.0). At the optimal adsorption condition, the dye removal ratio was 95.5%. Dye-saturated kaolinite could desorb at aqueous NaOH, the desorption ratio of dye was 78.8%. The linear Langmuir and Freundlich isotherm models are well fitting to represent the experimental data.  相似文献   

10.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

11.
A novel cellulose-based adsorbent, iron(III)-coordinated amino-functionalised poly(glycidylmethacrylate)-grafted cellulose [Fe(III)–AM-PGMACell] was developed for the removal of phosphate from water and wastewater. The scanning electron micrograph showed that AM-PGMACell has a rougher surface than cellulose and the adsorption of Fe(III) on AM-PGMACell made the surface even rougher. Infrared spectroscopy revealed that amino groups on the surface of AM-PGMACell complexed with Fe(III) played an important role in the removal of phosphate from solutions. X-Ray diffraction patterns showed a decrease in crystallinity after graft copolymerisation onto cellulose. The effects of contact time, initial sorbate concentration, pH, agitation speed, dose of adsorbent and temperature on the removal process were investigated. Maximum removal of 99.1% was observed for an initial concentration of 25 mg·L ?1 at pH 6.0 and an adsorbent dose of 2.0 g·L ?1. A two-step pseudo-first-order kinetic model and Sips isotherm model represented the measured data very well. Complete removal of 11.6 mg·L ?1 phosphate from fertiliser industry wastewater was achieved by 1.6 g·L ?1 Fe(III)–AM-PGMACell. The adsorbent exhibited very high reusability for several cycles. Overall, the study demonstrated that Fe(III)–AM-PGMACell can be used as an efficient adsorbent for the removal and recovery of phosphate from water and wastewater.  相似文献   

12.
Biochar, is a low-cost material that can be used as an alternative adsorbent for the removal of heavy metals. In this study, a low-cost and efficient adsorbent synthesised from Jatropha curcas seeds was used for the uptake of Cu2+ from aqueous solutions. The as-prepared adsorbent was characterised by scanning electron microscopy and Brunauer–Emmett–Teller analysis post calcination at 500 °C, its BET surface area and total pore volume were 39.62?m2?g?1 and 0.049?m3?g?1, respectively. Subsequently, the effects of initial pH of the solution, contact time, and adsorbent material dosage on the adsorption of Cu2+ by the prepared adsorbent were investigated. The as-prepared adsorbent exhibited a high performance, with a maximum adsorption amount of 32.895?mg?g?1 for Cu2+ at pH 5.0 and 25 °C, owing to the presence of ?OH, C=O, C–O, Si-O-Si, and O-Si-O on its surface. The predominant Cu2+ adsorption mechanism was assumed to be ion exchange. Notably, the Cu2+ adsorption could attain equilibrium within 90?min. In addition, the fact that the Langmuir model was a better fit than the Freundlich model for the isotherm data of Cu2+ adsorption by the as-prepared adsorbent suggested that the adsorption of Cu2+ was a monolayer adsorption process.  相似文献   

13.
A laboratory scale, undivided electrolysis cell with platinum anode and cathode was used for electrochemical oxidation of the azo dye Acid Red 73 in simulated wastewater. The influence of the supporting electrolyte, applied voltage, pH, initial dye concentration and temperature was studied, and decolorization was monitored by UV/Vis spectroscopy. Energy consumption, current efficiency and the electric energy per order have been also determined. With NaCl (1.5 g L?1) as supporting electrolyte, at a voltage of 6 V, at neutral pH (6.9) and at 25 °C, the solution of the dye (50 mg L?1) was completely decolorized within 15 min. The apparent activation energy for electrochemical decolorization was determined as ?1.9 kJ mol?1.  相似文献   

14.
Removal of selenite [Se (IV)] from aqueous solution on to industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide as adsorbent was investigated in the present article. Maximum adsorption was found to be at pH 4.0. Pretreated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of selenite compared to untreated adsorbent. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the pretreated and untreated adsorbents was found to be 15.63 and 6.04?mg?g?1, respectively. The adsorption process fit into the second-order kinetics. Thermodynamic parameters show that the adsorption process is spontaneous and endothermic in the temperature range 32 to 60°C. Coexisting anions vanadate and phosphate significantly affect the adsorption of selenite for both the pretreated and untreated adsorbents. Molybdate, thiocyanate, sulphate, nitrate and chloride do not significantly affect the removal of selenite for pretreated adsorbent.  相似文献   

15.
Hazardous wastes are generated in the synthesis of dyes and pigments applied in industries. Efficient methods are thus needed to clean wastewaters. Here, we use anodic oxidation and electro-Fenton with B-doped diamond anode to degrade the synthetic dye indigo in aqueous sodium dithionite. Results show the near-complete mineralization of the dye within 80 min at 500 mA. Mineralization was faster by electro-Fenton than anodic oxidation. The second-order rate constant (k) for the reaction of indigo with ·OH was measured as 4.03 × 109 M?1 s?1 at pH 3.0 and was compared with the rate constants of reactions between dyes and ·OH. The results clearly demonstrate that both electro-Fenton and anodic oxidation can be used to depollute dyes in textile effluent with high efficiency and low cost. The main oxidant, ·OH, being a non-selective reagent, the method could be applied to degrade other organic pollutants.  相似文献   

16.
The use of an abundant and widely distributed seagrass species, Posidonia oceanica, as a biosorbent for the direct dye Yellow 44 was successfully shown. The studies were performed on the single dyestuff dissolved in water and in a dyebath containing agents commonly used in the textile industry, i.e. a surfactant (Lavotan TBU), a sequestring agent (Meropan DPE), a softening agent (Eurosoft CI10) and a salt (NaCl). The colour reduction results showed that P. oceanica was found to be more efficient for removal of Yellow 44 from an aqueous solution (162 mg g?1) than from a dyebath solution (135 mg g?1), according to the Langmuir isotherm model. For the single dyestuff sorption, Fourier transform infrared and X-ray photoelectron spectroscopy studies highlighted chemical sorption between the dye alcohol function and the sorbent acid function. The chemical oxygen demand removal percentages were found to be 54.9 and 76.6% for Yellow 44 dissolved in aqueous solution and in dyebath solution, respectively. This confirmed the both sorption of the chemical auxiliaries and the dye on P. oceanica.  相似文献   

17.
The removal of arsenic from water with natural and modified clinoptilolite   总被引:1,自引:0,他引:1  
The presence of increased arsenic concentrations in Eastern Croatia is a consequence of the geological composition of the soil. Because of its known harmful effects, arsenic removal is of high importance and adsorption represents an attractive and economically efficient approach to arsenic removal. The use of zeolites obtained from the Donje Jesenje deposit, Croatia (CZ) and the Zlatokop deposit in Vranjska Banja, Serbia (SZ) in Na- and Fe–Na-modified forms was investigated in order to effectively remove arsenate and arsenite from aqueous solutions. The adsorption kinetics of arsenic was studied as a function of the initial arsenate and arsenite concentrations (30–300 μg · L?1), equilibration time (3–48 h), pH (5–10) and in the presence of sulfate and phosphate at initial concentrations of 0.2–0.5 mg · L?1. In order to estimate sorption constants designating the sorption capacity and affinity of the zeolites samples, the experimental results were fitted to the Langmuir and Freundlich sorption isotherms. Desorption tests conducted with 1–3 mol · L?1 HCl indicated that arsenate sorption was irreversible. The results obtained indicated that use of the Serbian zeolite in the Fe–Na-modified form (Fe–Na-SZ) was favourable for arsenate removal from water containing up to 30 μg As · L?1.  相似文献   

18.
19.
Phosphate removal from aqueous solution was explored using granular ferric hydroxide (GFH) as an inorganic adsorbent. Adsorption, desorption and kinetic studies were conducted on laboratory scale to evaluate the performance of GFH as an adsorbent for low concentrations of phosphate solution. The effect of pH on adsorption was investigated, and phosphate uptake was shown to decrease with an increase in solution pH, with maximum removal seen to occur at pH 3. The experimental data best fit the Temkin isotherm at both pH 3 and 4. Uptake of phosphate by GFH follows second-order kinetics, with the small particle range (76–200 μm) removing phosphate from the solution more rapidly than the larger particle range (710–850 μm). The kinetic results suggest that intra-particle diffusion is an important factor in phosphate adsorption onto GFH. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) were evaluated, and the results indicated that the adsorption process was endothermic and spontaneous. This study demonstrates that GFH has potential to be used as a cost-effective adsorbent for phosphate removal from aqueous solution.  相似文献   

20.
Quantitative analysis of cadmium in environmental samples was achieved with a polymeric sorbent synthesized by copolymerization of N,N-dimethylacrylamide and allyl glycidyl ether/iminodiacetic acid as chelating monomers with N,N′-methylenebisacrylamide as cross-linker. The polymer was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. The sorption capacity of the functionalized sorbent was 70 mg g?1. The equilibrium sorption data of Cd(II) on polymeric sorbent were analyzed using Langmuir, Freundlich, Temkin, and Redlich–Peterson models. Based on equilibrium adsorption data, the constants at pH 4.2 and 20 °C were determined for the first three as 0.33 (L mg?1), 17.5 (mg g?1) (L mg?1)1/n, and 12.9 (J mol?1). Recovery of 94% of the metal ion was obtained with 0.5 mol L?1 nitric acid as an eluting agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号