首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Urban stormwater systems traditionally used “grey” infrastructure to manage runoff. Contemporary designs now incorporate “green” infrastructure, which offers additional potential benefits such as urban amenities and health. Understanding how green and grey infrastructure investments are distributed across urban areas is important for new goals of promoting environmental justice in planning. In California, for instance, public investments increasingly require a percentage of funds to be spent in disadvantaged communities. Recent advancements in the availability of high-detail geographic data in cities can support prioritising investments to fulfil these multiple benefits. This paper analyses the distribution of stormwater infrastructure in Los Angeles (LA) County in relation to design criteria, urban structure and sociodemographic information. It demonstrates an approach for identifying projects that simultaneously address engineering needs and promote equity. Statistical analysis of high-detail sewer locations reveals geographic correlations with key local design parameters, urban characteristics and sociodemographic indicators. Watershed areas in LA County were identified that support multi-benefit projects, meeting dual criteria for infrastructure improvements and disadvantaged community status. As stormwater systems are increasingly designed for multi-benefit outcomes, new design frameworks can emphasise both performance and social equity.  相似文献   

2.
120 years or more of unsustainable urban development has damaged the natural environment and disrupted essential ways to stabilize water body overflow and even mitigate pluvial flooding. In light of catastrophic flooding that has occurred globally, a renewed commitment to transforming built surfaces and incorporating more green infrastructures (GIs) has emerged. In fact, one could argue that an overcommitment to GI is being touted in the literature, but largely disconnected from more real-world possibilities, considering all things. In this commentary, we make the case that as cities transition from development patterns of the past and even considering climate-induced storm characteristics of the future, a hybridized solution (e.g., Green–Gray) should be considered. Smaller approaches to urban greening have been implemented in areas that need larger-scale restorations, thus proving to be insufficient. Likewise, the uncertainty surrounding rainfall and storm events has forced us to be more strategically balanced in our efforts to achieve resilience in our stormwater infrastructure. Hybridized solutions that include a diverse set of systems, anchored in local conditions, position us best for effective urban stormwater management. In the absence of such solutions, runoff volumes will continue to rise, flooding will prevail, and disenfranchised communities will remain disproportionately impacted by these impacts of urbanization.  相似文献   

3.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

4.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   

5.
Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.  相似文献   

6.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

7.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

8.
Many cities throughout the world are adopting green infrastructure techniques to reduce stormwater and sewer overflows into waterways, which is particularly problematic for places experiencing more frequent and severe rain events. Governance of green stormwater implementation is proving to be as important as the techniques themselves. Building on the climate and sustainability governance literature, we argue that effective governance requires planning across city departments, experimentation and a strategy for organisational learning. We employ a case study of Philadelphia, the first city in the United States to attempt an entirely green approach to meeting federal regulations to examine issues of governance that emerged and how they were addressed. The case study draws on interviews with fourteen public and private sector actors involved in implementation, a site visit to observe the installations and to discuss the approach with a key planner, and grey literature. We find that silos can be broken down and that if open communications and a willingness to change practices are present, obstacles cited in the literature can be overcome. The key implication is that the three elements of governance need to be built into the green infrastructure planning process. While the analysis focuses on a US city, the departments involved and the governance needs of green stormwater infrastructure are similar in cities in much of the world.  相似文献   

9.
There is now an emerging sense of the scope and nature of response that can be implemented at building and neighbourhood scales to help adapt cities and urban areas to the changing climate. In comparison, the role of larger natural and semi-natural landscapes that surround and permeate cities is less well understood. Addressing this knowledge gap, this paper outlines two case studies that describe and map the flood risk management functions offered by green infrastructure landscapes situated within the Urban Mersey Basin in North West England. The case studies establish that areas potentially exposed to flooding can be located at some distance, and within different jurisdictions, from upstream areas where the flood hazard may be generated and could be moderated via functions provided by green infrastructure landscapes. This raises planning and governance challenges connected to supporting and enhancing flood risk management functions provided by green infrastructure landscapes.  相似文献   

10.
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.  相似文献   

11.
The microbiological quality of diffuse impermeable surface runoff is described in terms of bacterial densities and pathogens observed within urban catchments in North London and Milton Keynes and the use of somatic bacteriophages as faecal indicators are evaluated. The studies show the occurrence of faecal indicator organisms (FIOs) and pathogens to be ubiquitous in stormwater runoff from all types of urban land use surfaces, with the possible exception of major highways. Urban catchments in North London show a progressive downstream increase in FIOs and pathogens consonant with increasing urbanization and incidence of stormwater outfalls and combined sewer overflows (CSOs). Surface water FIOs and pathogens appear to be predominantly of non‐human origin being primarily derived from animal and bird sources, although the effect is over‐ridden in the presence of misconnections and CSO discharges. A combination of infrastructure improvement, end‐of‐pipe detention, source control and more robust local authority regulation is recommended for effective management and remediation of bacteriological urban water quality.  相似文献   

12.
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs.  相似文献   

13.
Kenney, Melissa A., Peter R. Wilcock, Benjamin F. Hobbs, Nicholas E. Flores, and Daniela C. Martínez, 2012. Is Urban Stream Restoration Worth It? Journal of the American Water Resources Association (JAWRA) 48(3): 603-615. DOI: 10.1111/j.1752-1688.2011.00635.x Abstract: Public investment in urban stream restoration is growing, yet little has been done to quantify whether its benefits outweigh its cost. The most common drivers of urban stream projects are water quality improvement and infrastructure protection, although recreational and aesthetic benefits are often important community goals. We use standard economic methods to show that these contributions of restoration can be quantified and compared to costs. The approach is demonstrated with a case study in Baltimore, Maryland, a city with a legal mandate to reduce its pollutant load. Typical urban stream restoration costs of US$500-1,200 per foot are larger than the cost of the least expensive alternatives for management of nitrogen loads from stormwater (here, detention ponds, equivalent to $30-120 per foot of restored stream) and for protecting infrastructure (rip-rap armoring of streambanks, at $0-120 per foot). However, the higher costs of stream restoration can in some cases be justified by its aesthetic and recreational benefits, valued using a contingent valuation survey at $560-1,100 per foot. We do not intend to provide a definitive answer regarding the worth of stream restoration, but demonstrate that questions of worth can be asked and answered. Broader application of economic analysis would provide a defensible basis for understanding restoration benefits and for making restoration decisions.  相似文献   

14.
It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative “integrated urban stormwater management” techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.  相似文献   

15.
The major purpose of this paper is to explore the potential value of benefit–cost evaluation for stormwater quality management decisions at a local level. A preliminary benefit–cost analysis (BCA) screening method is used for maximum extent practicable (MEP) analysis, identifying promising management practices, and identifying societal and economic tradeoffs for local stormwater problems. Ballona Creek, a major urban storm drain in Los Angeles, California, USA, is used to illustrate the practicality of the benefit–cost evaluation. The Ballona Creek example demonstrates the economic limits of stormwater management in an urban region and attests to the value of coordinated basinwide management compared to uncoordinated management by individual landowners. Evaluation results suggest that in urban areas, the benefit of stormwater quality improvements might be far greater if accompanied by comprehensive redesign of drainage networks and neighboring land uses. In this case, benefit–cost analysis is found to be useful for evaluating and understanding stormwater management alternatives despite the uncertainties in characterizing stormwater quality and the effects of stormwater management on improving receiving water quality.  相似文献   

16.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

17.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   

18.
With the use of water approaching, and in some cases exceeding, the limits of sustainability in many locations, there is an increasing recognition of the need to utilise stormwater for non-potable requirements, thus reducing the demand on potable sources. This paper presents a review of Australian stormwater treatment and recycling practices as well as a discussion of key lessons and identified knowledge gaps. Where possible, recommendations for overcoming these knowledge gaps are given. The review of existing stormwater recycling systems focussed primarily on the recycling of general urban runoff (runoff generated from all urban surfaces) for non-potable purposes. Regulations and guidelines specific to stormwater recycling need to be developed to facilitate effective design of such systems, and to minimise risks of failure. There is a clear need for the development of innovative techniques for the collection, treatment and storage of stormwater. Existing stormwater recycling practice is far ahead of research, in that there are no technologies designed specifically for stormwater recycling. Instead, technologies designed for general stormwater pollution control are frequently utilised, which do not guarantee the necessary reliability of treatment. Performance modelling for evaluation purposes also needs further research, so that industry can objectively assess alternative approaches. Just as many aspects of these issues may have impeded adoption of stormwater, another impediment to adoption has been the lack of a practical and widely accepted method for assessing the many financial, social and ecological costs and benefits of stormwater recycling projects against traditional alternatives. Such triple-bottom-line assessment methodologies need to be trialled on stormwater recycling projects. If the costs and benefits of recycling systems can be shown to compare favourably with the costs and benefits of conventional practices this will provide an incentive to overcome other obstacles to widespread adoption of stormwater recycling.  相似文献   

19.
Integrated Approaches in Urban Storm Drainage: Where Do We Stand?   总被引:1,自引:0,他引:1  
Integrated approaches to urban stormwater drainage management are being increasingly advocated as necessary for advancing more sustainable and holistic management of urban water environments. In this paper, the status of integrated approaches in the management of urban stormwater discharges to receiving waterways is summarized. The starting point of the paper is with the recent scientific contributions, revealing that integration is being pursued and implemented predominantly at two conceptual levels. These include 1) integrating the technical system with the receiving waterway environment, and 2) considering the interaction and influence of the human system with the technical system through processes such as stakeholder and public participation. Additionally, it is argued that the evolving shift towards the implementation of water-quality-based strategies advances the need for further development and application of integrated models and approaches. The cases of online physically based models for predictive control and integrated source control and public participation are presented as examples of such ongoing developments in pursuit of integrated urban stormwater management.  相似文献   

20.
Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation community’s interests to actively facilitate green infrastructure planning because it creates a more predictable environmental review context. On the other hand, for landscape-level green infrastructure, transportation planning and development is much more established and better funded and can provide a means of supporting green infrastructure planning and implementation, thereby enhancing conservation of ecological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号