首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
河南省平顶山市大气PM10和PM2.5污染水平及其微量元素特征   总被引:7,自引:0,他引:7  
目前,大气颗粒物的研究主要集中在可吸入颗粒物(PM10),尤其是细颗粒物(PM2.5)方面.美国EPA(1997年)颁布了PM2.5的空气质量标准,其日均值为0.065mg·m-3,年均值为0.015mg·m-3,其限制非常严格.我国现行的环境空气质量标准中PM10的二级质量标准日均值为0.15mg·m-3,年均值为0.10mg·m-3,标准中尚无对PM2.5的规定.  相似文献   

2.
我国四个大气背景点颗粒物浓度及其元素分布特征   总被引:2,自引:0,他引:2  
选择全国由南至北的4个大气背景站(广东南岭、湖北神农架、山西庞泉沟和吉林长白山),于2013年分4个季度同步采集环境空气颗粒物PM10和PM2.5样品,采用微波消解电感耦合等离子体质谱法测定滤膜样品中60余种元素.结果表明,4个背景点PM2.5日均质量浓度平均值为17μg·m-3,PM10为29μg·m-3,低于《环境空气质量标准》(GB 3095—2012)规定的一级浓度限值.第一季度的PM10和PM2.5最高,除长白山第三季度高于第四季度之外,其他3个点位均呈现第二季度第四季度第三季度的趋势.PM2.5和PM10二者呈线性正相关,4个季度的PM2.5/PM10比值均小于0.5,第二、第三季度较高,而第一、第四季度较低.PM10和PM2.5中元素随季节变化不大,PM2.5含量在同一水平上低于PM10.Na、Mg、Al、S、K、Ca、Fe、Zn质量浓度在0.1—10μg·m-3之间,P、Ti、Mn、Ni、Cu、Ba、Pb质量浓度在10—100 ng·m-3之间,Cd、Co、Ge、Ga、Zr、Sr、V等质量浓度在0.01—10 ng·m-3之间.K、Al、Ca含量大于10%,S、Mg、Na、Fe、Zn、Pb、Mn含量大于1%,Cu、P、Ba、Ti量介于0.5%—1%,其他痕量元素含量所占比例小于0.5%.  相似文献   

3.
通过研究遂宁市环境空气质量变化趋势、城区空气颗粒物组成及浓度变化,系统分析了遂宁市雾霾天气的污染状况及成因,并横向比较了四川省内各城市的空气质量.研究结果表明,细颗粒物(PM2.5)是遂宁市环境空气中的主要污染物.2012年遂宁市大气中PM2.5浓度值为35—119μg·m-3,平均值为68μg·m-3.2013年1—4月,PM2.5浓度值为21—120μg·m-3,达标率不到50%.尤其在2013年3月,PM2.5/PM10由62.0%—87.2%降低为45.3%.由此判断遂宁市环境空气质量主要受细颗粒物类型、气象条件以及大气污染物长距离迁移等因素影响,其中细颗粒物的最主要来源为机动车尾气排放,并提出了细颗粒物污染防治的对策措施.  相似文献   

4.
辽宁本溪大气颗粒物浓度特征   总被引:2,自引:0,他引:2  
利用本溪大气成分监测站2008年3月至2009年2月大气颗粒物监测仪GRIMM180的连续监测资料,对该地区大气颗粒物的质量浓度变化、谱分布特征以及大气颗粒物与气象因素的关系进行分析研究.结果表明,本溪PM10和PM2.5平均质量浓度分别为0.086 mg.m-3和0.058 mg.m-3,其日平均质量浓度变化幅度较大;冬季和夏季质量浓度日变化均呈现明显的双峰双谷特征;数浓度谱分布较好地符合Junge分布;PM10日平均值超标率为8.7%,且大气颗粒物主要是以细粒子的形式存在;随风速的增大大气颗粒物质量浓度基本呈现逐渐减小的趋势,当风速〉0.6 m.s-1时,大气颗粒物质量浓度随风速增大下降明显,风速〉3.0 m.s-1时,下降的趋势减缓;降水过程对大气颗粒物有清除作用,其中对粗粒子的清除效果非常明显.  相似文献   

5.
2013年10月至2014年7月,在太原城区,分4个月采集大气细颗粒物,每个月选取4个样品,分析了颗粒物上8种多溴联苯醚(PBDEs)和6种新型溴代阻燃剂(NBFRs)的浓度与组成。结果表明,大气PM2.5样品中PBDEs和NBFRs总浓度算术平均值分别为(10.9±10.3)pg·m-3和(22.3±24.7)pg·m-3,其中BDE-209、HBB和DBDPE是溴代阻燃剂中的主要污染物。季节变化来看,秋季样品中总PBDEs和总NBFRs的浓度要高于其他季节,夏季最低;化合物组成上,秋季样品中BDE-209含量较低,而NBFRs中HBB含量较高。相关分析显示,溴代阻燃剂的变化与颗粒物浓度和有机质的相关性不大,与大气温度与无显著性相关,而主要与气团来源有关。城市儿童的吸入暴露量约为成人的2~3倍,反映出PM2.5中溴代阻燃剂对城镇居民尤其是儿童的潜在健康危害仍不容忽视。  相似文献   

6.
西安市大气颗粒物中水溶性无机离子的季节变化特征   总被引:18,自引:0,他引:18  
用离子色谱法对11种无机水溶性离子(Na+,NH4+,K+,Mg2+,Ca2+,F-,Cl-,Br-,NO-2,NO-3和SO2-4)进行分析,探讨大气颗粒物中水溶性无机组分的季节变化与典型污染(灰霾、浮尘、燃烧秸秆和燃放烟花)的理化特性.结果表明,西安市大气中PM2.5和TSP的日均质量浓度分别为167.1和382.0μg·m-3,PM2.5占TSP总质量浓度的44%.PM2.5和TSP中无机水溶性离子组分的年均值分别为75.2μg·m-3和101.7μg·m-3.PM2.5中水溶性离子组分占PM2.5总质量浓度的45%左右,TSP中水溶性离子组分占TSP总质量浓度的30%左右.各种水溶性离子的来源和形成机理不同,其季节变化趋势和粒径分布也不同.典型污染事件期间,颗粒物污染特征与平时相比有很大差异:雾霾时PM2.5和TSP的质量浓度都显著增加,主要污染组分为二次污染离子NH+4,NO-3和SO2-4;浮尘发生时,大气颗粒物中人为污染组分会大大减少,而来自沙尘传输和地面扬尘等的地壳物质显著增加;燃烧秸秆对大气颗粒物中K+和Cl-的影响最大;燃放烟花时K+,Mg2+和Ca2+的质量浓度显著增加.  相似文献   

7.
北京市大气颗粒物PM2.5,PM10及降雪中的汞   总被引:9,自引:0,他引:9  
研究了北京大气颗粒物PM25,PM10及降雪中的汞.结果表明,北京大气颗粒物PM25中汞的浓度为024—179ng·m-3,PM10中汞的浓度为038—302ng·m-3,冬季PM25和PM10中汞的浓度明显高于夏季;北京大气可吸入颗粒物中的汞均以细粒子(≤25μm)为主,冬季细粒子中汞的浓度高是细粒子多且其汞含量高共同作用的结果,而夏季则是细粒子中汞的含量高.降雪中汞的浓度在106—162ng·l-1之间,降雪中可溶性汞为总汞的一半左右.  相似文献   

8.
杭州市大气PM_(2.5)中碳分布特征及来源分析   总被引:1,自引:0,他引:1  
碳是城市空气中颗粒物的主要成分之一.PM2.5中的碳主要以有机碳(OC)和元素碳(EC)的形式存在.本文对杭州市大气中PM2.5颗粒物进行研究,探讨有机碳和元素碳的分布特征.  相似文献   

9.
为研究京津冀地区冬、夏两季大气颗粒物质量浓度与水溶性离子组成特征,于2013年2月、7月对北京、天津、石家庄及4个国家大气背景点进行了PM2.5及PM10的采样,分析了质量浓度及9种水溶性离子,结果表明:(1)京津冀地区颗粒物污染冬季重于夏季,冬季污染水平石家庄天津北京,夏季污染天津、北京石家庄,区域内PM2.5与PM10之间有很好的相关性,相关系数r冬季为0.8796,夏季为0.8424,说明整个区域颗粒物污染有较为相近的来源,大气颗粒物污染表现出区域性特征;(2)京津冀地区PM2.5及PM10中的9种水溶性离子浓度规律为NO-3、SO2-4、NH+4Cl-、Ca2+K+、Na+F-、Mg2+.该地区水溶性离子污染冬季最重为石家庄,夏季则为北京;(3)在京津冀地区二次离子NO-3、SO2-4、NH+4是主要的污染离子,3种离子质量浓度总和在PM2.5、PM10中冬季分别占48.9%、27.8%,夏季分别占58.7%、48.5%.二次离子主要集中在PM2.5中,其对细离子浓度的升高起到直接作用,且二次离子的构成关系也在发生变化.整个区域向硝酸型污染转变,二次离子的季节分布也呈现区域特征,冬季NO-3离子质量浓度比重最大.夏季则为SO2-4;(4)粒径越小富集水溶性离子的能力越强,在PM1中分布了50%以上的水溶性离子,73.9%—94.8%的水溶性离子分布在PM2.5中.  相似文献   

10.
成都市灰霾与正常天气下大气PM2.5的化学元素特征   总被引:2,自引:0,他引:2  
为研究成都市灰霾期间PM2.5中元素的特征,于2009年4月和5月采集环境大气中PM2.5样品,用X-射线荧光光谱法测定元素含量.研究结果表明,成都市非灰霾与灰霾期间PM2.5的质量浓度分别为124.9 μg·m-3 和152.8 μg·m-3;Na、Mg、Al、Si和Ca的质量浓度在非灰霾期间略高于灰霾期间,其它元素则基本上是灰霾大于非灰霾期间.富集因子分析表明,Na、Mg、Al、Si和Ca在不同天气下主要是地壳来源,而Cu、Zn、Mo、Pb、Br、S、Cd、As和Cl在灰霾期间更容易富集,与人类活动密切相关.因子分析显示,灰霾期间重金属元素主要来源于机动车排放、地面扬尘、冶金化工.  相似文献   

11.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

12.
近年来,PM10和PM2.5由于其对人类健康的负面影响,愈来愈受到人们的关注.细粒子PM2.5更容易富集有毒金属元素,并可进入人体肺部,对人体的危害性更大.本文对北京市PM10和PM2.5的质量浓度及其元素含量进行了分析.  相似文献   

13.
重庆市主城区春夏季不同粒径颗粒物污染特征分析   总被引:2,自引:0,他引:2  
采用多通道采样器,采集重庆市主城区PM1.0、PM2.5和PM103种粒径的颗粒物样品,结果显示采样期间PM1.0、PM2.5和PM10日浓度均值分别为0.057 mg/m3、0.075 mg/m3和0.120 mg/m3,主城区颗粒物污染较为严重。对3种粒径颗粒物样品中的碳组分、水溶性组分以及无机污染元素组分进行分析...  相似文献   

14.
忻州市市区大气颗粒物中的元素组成特征   总被引:6,自引:0,他引:6  
采集忻州市市区冬季和夏季总悬浮颗粒物(TSP)和可吸入颗粒物(PM10)样品,测定其中Na、Mg、Al、Si、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd、Pb等18种元素含量,并对元素的浓度水平、时空分布特征和重金属的潜在生态风险以及元素的主要来源进行了研究.结果表明,忻州市TSP和PM10中18种元素平均浓度分别为47662.2 ng·m-3和17546.4 ng·m-3,重金属的生态危害在TSP中由高到低依次为CdCuCoPbAsCrZnNiMn,在PM10中为CdCuPbCoZnCrAsNiMn,且PM10比TSP具有更强的生态危害性.富集因子和主因子分析法表明,忻州市PM10中元素的主要排放源包括:煤烟尘和工业粉尘、土壤风沙尘、建筑水泥尘和汽车尾气,贡献率分别为56.30%、23.88%、19.78%.  相似文献   

15.
北京大气颗粒物中多环芳烃浓度季节变化及来源分析   总被引:13,自引:1,他引:12  
使用大流量滤膜采样器,从2006年9月至2007年8月,每周同时采集北京城市大气可吸入颗粒物(PM10)和细粒子样品(PM2.5)各一次,二氯甲烷超声抽提一气相色谱/质谱分析了17种多环芳烃(PAHs)浓度,结果表明,春、夏、秋、冬四季北京大气PM10和PM2.5中PAHs总量分别为63.8±44.6ng·m-3、43.2±4.5ng·m-3、84.7±108.3ng·m-3、348.0±250.0ng·m-3和54.7±17.3ng·m-3、40.3±8.6ng·m-3、66.1±81.5ng·m-3、337.7±267.2ng·m-3;约有70%的PAHs存在于细粒子PM2.5中,其质量浓度有明显季节变化,冬季>秋季>春季>夏季;颗粒物中PAHs主要以4、5、6环存在,其中4环以上占79.4%.源解析表明,北京大气颗粒物中的PAHs主要来自燃煤,同时汽油、柴油燃烧排放也不能忽略.结合气象要素分析,温度升高和太阳辐射增强易造成多环芳烃挥发和反应,湿沉降有利于多环芳烃随颗粒物清除.  相似文献   

16.
采用中流量TSP采样器在北京大学住宅小区和教学楼同步采集了室内和室外的大气颗粒物样本 ,分析了其中的HCHs和DDTs残留量 .结果表明 :室内外大气颗粒物中∑HCH的含量分别为 0 1 39ng·m- 3和 0 1 63ng·m- 3,∑DDT含量为 0 40 1ng·m- 3和 0 42 4ng·m- 3.室内外的浓度差别不大 .但由于室内空气颗粒物含量显著低于室外 ,其颗粒物中HCHs和DDTs的质量浓度显著高于室外 ,这可能与室内颗粒物的粒径较小有关 .考虑到室内外空气颗粒物中有机氯异构分布的相似性 ,居住区室内空气颗粒物中的HCHs和DDTs主要来自室外 .而实验室内空气在一定程度上受HCHs内部源污染 .  相似文献   

17.
为了解鞍山市秋季大气细颗粒(PM2.5)中污染元素的污染特征和来源,于2014年10月在鞍山市6个监测点位采集PM_(2.5)样品,运用富集因子和相关分析法对元素的污染特征和来源开展研究.结果表明,Fe、Ca、Zn、Mg、Na、Pb元素浓度含量之和占所有检测的12种元素浓度的98.13%,是主要的污染元素;鞍山市秋季大气细颗粒物中污染元素主要来源于钢铁冶炼、机动车尾气与燃煤的混合型污染源.  相似文献   

18.
北京市秋季大气颗粒物的污染特征研究   总被引:22,自引:0,他引:22  
大气颗粒物是造成城市空气污染的重要原因之一,并已经成为我国北京等大中城市空气污染中的首要污染。为了分析北京市大气细颗粒物的污染水平及其影响因素,以大气中的PM10和PM2.5为研究对象,于2005年秋季在北京市设立了9个采样点进行采样监测,通过对所采集到的PM10和PM2.5质量浓度的对比来分析大气颗粒物的空间分布和时间变化特征,并建立起PM10和PM2.5质量浓度与风力、温度、湿度等气象条件的对应关系来分析各种气象因素对大气细颗粒物污染水平的影响。结果表明:北京市不同区域的PM10和PM2.5的质量浓度差异较大,同时,值得注意的是通过对同一地点同一采样时间大气颗粒物质量浓度的对比发现PM2.5质量浓度的空间分布并不完全同于PM10,这主要是与采样点所处的环境中不同污染源影响的强弱有关;气象条件稳定时,PM10和PM2.5质量浓度的日变化表现出一定的规律性,这种时间变化的特征主要取决于所在环境中排放的污染物变化情况;气象条件是影响PM10和PM2.5污染程度的重要因素,在一定的范围内,颗粒物质量浓度随着温度的上升而下降,随着相对湿度的升高而增大,随着风力的增强而减小。  相似文献   

19.
了解北京市城区和郊区大气细颗粒物中的四种水溶性阴离子F-、Cl-、SO42-、NO3-的浓度水平,并分析影响其水平高低的因素。使用聚四氟乙烯滤膜分别采集北京市城区和郊区大气中的PM2.5,用纯水提取后采用离子色谱法测定水溶性阴离子质量浓度。采样期间北京市大气PM2.5、F-、Cl-、SO42-和NO3-质量浓度几何均数分别为55.36、0.02、0.46、6.72和1.09μg·m-3,四种水溶性阴离子质量浓度总和占PM2.5质量浓度的19.14%;同一季节(春季)郊区监测点大气PM2.5、SO42-和NO3-质量浓度显著高于城区监测点;城区大气PM2.5与四种水溶性阴离子质量浓度秋季高于春季,但差异无统计学意义;大气PM2.5与Cl-、SO42-和NO3-质量浓度均高度相关。Cl-、SO42-、NO3-是北京市大气PM2.5的重要组成成分。  相似文献   

20.
了解北京市城区和郊区大气细颗粒物中的四种水溶性阴离子F-、Cl-、SO42-、NO3-的浓度水平,并分析影响其水平高低的因素。使用聚四氟乙烯滤膜分别采集北京市城区和郊区大气中的PM2.5,用纯水提取后采用离子色谱法测定水溶性阴离子质量浓度。采样期间北京市大气PM2.5、F-、Cl-、SO42-和NO3-质量浓度几何均数分别为55.36、0.02、0.46、6.72和1.09μg·m-3,四种水溶性阴离子质量浓度总和占PM2.5质量浓度的19.14%;同一季节(春季)郊区监测点大气PM2.5、SO42-和NO3-质量浓度显著高于城区监测点;城区大气PM2.5与四种水溶性阴离子质量浓度秋季高于春季,但差异无统计学意义;大气PM2.5与Cl-、SO42-和NO3-质量浓度均高度相关。Cl-、SO42-、NO3-是北京市大气PM2.5的重要组成成分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号