首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included.  相似文献   

2.
During the Nantes'99 experiment, pollution concentrations, temperature, flow and turbulence conditions were measured at several locations in Rue de Strasbourg, Nantes, France. Traffic was measured by vehicle counters at different places within the street. Traffic speed was monitored as well. The measuring campaign was conducted in the period June–July 1999 but only data from a selected intensive observation period are used in this study. This period was selected to suit conditions required for study of the traffic produced turbulence and the thermal effects and is characterised by quite low wind speeds. The data are used here for examination of concentration distributions in the street. Measurements are compared to model results calculated by a simple parameterised model, the Operational Street Pollution Model (OSPM) and a 3-D CFD model MISKAM. Both models reproduce reasonably well the observed distribution of pollutants in the street. Due to predominantly low wind speed conditions, such effects as the traffic produced turbulence play a quite significant role. The model results provided by MISKAM are scaled using a velocity scale depending on the traffic produced turbulence. Application of a scaling velocity depending on wind speed only, provides unrealistic results.  相似文献   

3.
The formulations and evaluation of ROADWAY-2, a near-highway pollutant dispersion model, are described. This model incorporates vehicle wake parameterizations derived from canopy flow theory and wind tunnel measurements. The atmospheric velocity and turbulence fields are adjusted to account for velocity-deficit and turbulence production in vehicle wakes. A turbulent kinetic energy closure model of the atmospheric boundary layer is used to derive the mean velocity, temperature, and turbulence profiles from input meteorological data. ROADWAY-2 has been evaluated using SF6 tracer data from General Motors Sulfate Dispersion Experiment. The model evaluationresults are presented and discussed.  相似文献   

4.
Laboratory and field data suggest that the movement of spilled oil at sea is in general a three-dimensional phenomenon in physical space, whereas trajectories of undrogued surface drifters are more susceptible to two-dimensional analysis. These conclusions are consistent with the intermittent failure of two-dimensional surface models to simulate the trajectories of spilled oil, although such models may be more successful with data from surface drifters. A physical explanation is presented, and a model that incorporates the key portions of the governing processes is described and tested against data from experimental oil spills at sea. Observations suggest that emulsified surface oil will drift down wind at speeds in excess of 3% of the windspeed. When surface turbulence drives oil subsurface for a significant fraction of time, however, net transport speeds are considerably less and significantly to the right of the wind in the northern hemisphere.  相似文献   

5.
The National Oceanic and Atmospheric Administration's Multi-Layer Model (NOAA-MLM) is used by several operational dry deposition networks for estimating the deposition velocity of O3, SO2, HNO3, and particles. The NOAA-MLM requires hourly values of meteorological variables. Since collection of on-site meteorology can be expensive, a study was performed to compare NOAA-MLM predicted deposition velocitiesusing modeled meteorological data in lieu of on-site meteorological data. NOAA-MLM was run for three sites in the Clean Air Status and Trends Network using on-site data as well as the output of two mesoscale meteorological models, Eta and MM5. The differences between the deposition velocities predictedusing the mesoscale models and those predicted using the on-sitemeteorological measurements ranged from –0.001 to 0.106 cm s-1 and were within the model error determined in NOAA-MLM evaluation studies. This research shows that the NOAA-MLM is particularly sensitive to differences in atmospheric turbulence,soil moisture budget, and canopy wetness.(On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.) (author for correspondence, e-mail  相似文献   

6.
An oil spill model was applied to the Nakhodka tanker spill accident that occurred in the Japan Sea in January 1997. The amount of oil spilled was estimated to be around 5000 kl, released over 1 day. Under a 2-m wave height condition, and a 3.5% of drift factor, the model simulated the oil slick to hit the shoreline after 6 days. This was in good agreement with the observed conditions. After drifting to the shoreline, the oil slick moved northeastward with the current. In the model, the simulation where the shoreline absorbs 100% of stranded oil failed to reproduce the actual oil slick trajectory. The simulation in which oil resuspended after stranding indicated a similar trend to the actual case. Therefore, it is likely that a considerable amount of oil that hit the shoreline may have returned to the sea and moved with the current. The effects of current pattern and wind drift angle on the oil slick trajectory were also examined. It is suggested that the wind parameters were of prime importance in reproducing a realistic distribution.  相似文献   

7.
An inventory of standing waters (freshwater lakes and lochs) wasderived from Ordnance Survey digital map data at a scale of 1:50 000 and represents the most comprehensive survey of its kind for Great Britain. The inventory includes 43 738 water bodies in England, Scotland, Wales and the Isle of Man and contains basic physical data such as location, surface area, perimeter and altitude. Catchment areas were computed for water bodies with a surface area larger than 1 ha from a digital terrain model (DTM) using customised routines in a geographical information system (GIS). The resulting polygons were then used to derive catchment-related information from a variety of national datasets including population density, livestock density, land cover, solid and drift geology, meteorological data, freshwater sensitivity status, acid deposition and conservation status. Using data derived from the inventory a risk-based prioritisation protocol was developed to identify standing waters at risk of harm from acidification and eutrophication. This information is required by the Environment Agency, Scottish Environmental Protection Agency and the U.K. statutory conservation bodies to co-ordinate actions and monitor change under international, European and national legislation.  相似文献   

8.
Conventional methods to estimate groundwater velocity that rely on Darcy's Law and average hydrogeologic parameter values are insensitive to local‐scale heterogeneities and anisotropy that control advective flow velocity and direction. Furthermore, at sites that are tidally influenced or have extraction wells with variable pumping schedules, infrequent water‐level measurements may not adequately characterize the range and significance of transient hydraulic conditions. The point velocity probe (PVP) is a recently developed instrument capable of directly measuring local‐scale groundwater flow velocity and direction. In particular, PVPs may offer distinct advantages for sites with complex groundwater–surface water interactions and/or with spatially and temporally variable groundwater flow conditions. The PVP utilizes a small volume of saline tracer and inexpensive sensors to directly measure groundwater flow direction and velocity in situ at the centimeter‐scale and discrete times. The probes are installed in conventional direct‐push borings, rather than in wells, thus minimizing the changes and biases in the local flow field caused by well installation and construction. Six PVPs were installed at a tidally influenced site in North Carolina to evaluate their implementability, performance, and potential value as a new site characterization tool. For this study, a new PVP prototype was developed using a rapid prototyping machine (i.e., a “three‐dimensional printer'') and included both horizontally and vertically oriented tracer detectors. A site‐specific testing protocol was developed to account for the spatially and temporally variable hydraulic conditions and groundwater salinity. The PVPs were tested multiple times, and the results were compared to the results of several different groundwater flux and velocity estimation tools and methods, including a heat‐pulse flowmeter, passive flux meters, single‐well tracer tests, and high‐resolution hydraulic gradient analysis. Overall, the results confirmed that the PVP concept is valid and demonstrated that reliable estimates of groundwater velocity and direction can be obtained in simple settings. Also, PVPs can be successfully installed by conventional methods at sites where the formation consists primarily of noncohesive soils and the water table is relatively shallow. Although some PVP tests yielded consistent and reliable results, several tests did not. This is likely due to the highly transient flow conditions and limitations associated with the PVP design and testing procedures. PVPs offer particular advantages over, and can effectively complement, other groundwater flow characterization techniques for certain conditions, and objectives may be useful for characterizing complex flow patterns under steady conditions; however, this study suggests that PVPs are best suited for conditions where the flow hydraulics are not highly transient. For sites where the hydraulic conditions are highly transient, the most reliable approach for understanding groundwater flow behavior and groundwater–surface water interactions would generally involve both a high‐resolution hydraulic gradient analysis and another local‐scale method, such as tracer testing. This study also highlighted some aspects of the current PVP design and testing protocol that can be improved upon, including a more robust connection between the PVP and injection line and further assessment of tracer solution density effects on vertical flow. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Most standard oil spill modeling programs neglect the effects of Langmuir circulation (LC). The authors have identified three areas where LC effects may be important in spill behavior. These three areas are spreading, dispersion, and transport. LC will cause the slick to break into windrows when the wind-row formation velocity is comparable to Fay and other spreading forces. Oil dispersion is likely to be enhanced, with droplets carried to greater depth and distributed non-uniformly. Transport velocities for different parts of the slick will vary because of LC, a phenomenon that also occurs because of other factors.  相似文献   

10.
The ability of near‐surface disposal facility cover designs to meet percolation performance criteria can be influenced by naturally occurring climatic mechanisms as well as anthropogenic forcing. This study was conducted to determine the effect of climate‐induced events on percolation based, probabilistic distributions derived from historical climate data. Water balance predictions were evaluated using the HELP model, employing several variations of degradation in a traditional RCRA disposal facility cover design over a 100‐year simulation period. Results demonstrated that changes in precipitation and temperature can influence performance. The analysis also revealed that when both precipitation and temperature are increased, warmer temperatures tend to offset some of the impact from greater precipitation. ©2015 Wiley Periodicals, Inc.  相似文献   

11.
Kriging is an accepted method of characterizing the groundwater elevation surface at sites where the water level data are available but where there may be insufficient additional data necessary for groundwater flow modeling. Groundwater surface interpolation via kriging is readily performed using commercial, state of the practice software, but some practitioners may not be able to justify such efforts because the process is not validated within studies documented in the peer‐reviewed literature. This paper describes the available kriging software and literature studies and then uses a case study to compare practical groundwater surface modeling to the studies available in the scientific literature. The literature review shows that the state of the practice as represented by the commercial software approach is consistent with the literature. Specifically, cokriging with groundwater elevation as the primary variable with trend removal and ground‐surface elevation as the secondary variable is an appropriate point of departure in practice. The literature review‐based summary of variogram model parameters (model type, nugget, sill, range, and trend model) was not useful as a quality‐control step to assess the reasonableness of variogram parameters identified by the standard practice of software‐assisted iteration when applied to the case‐study data set. The literature review indicated that groundwater elevation kriging has been performed using as few as 10 data points but a comparison of the case‐study simulated groundwater elevations and groundwater gradient magnitudes and directions indicated that the 30‐well threshold more commonly found in the literature was an appropriate minimum at the study site.  相似文献   

12.
The oil spill trajectory and weathering model OILMAP was used to forecast spill trajectories for an experimental oil spill in the Barents Sea marginal ice zone. The model includes capabilities to enter graphically and display environmental data governing oil behavior: ice fields, tidal and background current fields, and wind time series, as well as geographical map information. Forecasts can also be updated from observations such as airplane overflights. The model performed well when wind was ‘off-ice’ and speeds were relatively low (3–7 m s−1), with ice cover between 60 and 90%. Errors in forecasting the trajectory could be directly attributed to errors in the wind forecasts. Appropriate drift parameters for oil and ice were about 25% of the wind speed, with an Ekman veering angle of 35° to the right. Ice sheets were typically 1 m thick. When the wind became ‘on-ice’, wind speeds increased to about 10 m s−1 and trajectory simulations began to diverge from the observations, with observed drift parameters being 1.5% of the wind speed, with a 60° veering angle. Although simple assumptions for the large scale movement of oil in dense ice fields appear appropriate, the importance of good wind forecasts as a basis for reliable trajectory prognoses cannot be overstated.  相似文献   

13.
Large-scale cyclic simple shear tests were conducted on reconstituted specimens of municipal solid waste (MSW) collected from the Tri-Cities landfill in Fremont, California, USA. The influence of waste composition and compacted unit weight on the shear wave velocity, small-strain shear modulus, and strain-dependent shear modulus reduction and damping ratio curves of MSW was investigated in these tests. Modulus reduction and damping ratio curves were evaluated over a strain range of 0.01-3%. Specimens were reconstituted using 100%, 65%, and 35%, by weight, of the material that passed through a 20mm screen and four different levels of compaction effort. All specimens were consolidated under a normal stress of 75 kPa prior to testing. The test results show a very strong dependence of shear wave velocity and small strain shear modulus on unit weight. Unit weight also had an influence on modulus reduction and damping ratio. Waste composition had a very strong influence on damping and also influenced shear wave velocity, small strain shear modulus, and modulus reduction. The interrelationship between unit weight and waste composition made it difficult to separate out the effects of these parameters.  相似文献   

14.
Pesticide users, natural resource managers, regulators, government agencies and many others are concerned about the off-site impact of pesticides on the environment. Systematic methods of the assessment of potential risk of pesticides to environmental components can serve as valuable tools in decision making and policy formulation. Simple risk indicators have been developed which cover a range of scenarios such as toxicity to organisms, health of farm workers, consumer health, and residues in harvested produce. The authors have developed a software package named Pesticide Impact Rating Index (PIRI) that outputs an improved pesticide risk indicator for water quality. PIRI is a standalone, user-friendly, platform-independent program. It can be used to (i) rank pesticides in terms of their relative pollution potential to groundwater or surface water, and (ii) to compare different land uses in a catchment or at a regional scale in terms of their relative impact on water quality. It is based on pesticides use; the pathway through which the pesticides are released to the water resources (drift, runoff, erosion, leaching) and the value of the water resources threatened. Each component is quantified using pesticide characteristics (including toxicity to organisms at different trophic levels, i.e. fish, daphnia, algae, etc.), environmental and site conditions (e.g. organic carbon content of soil, water input, slope of land, soil loss, recharge rate, depth of water table, etc.). This paper describes two case studies of the application of PIRI in Australia. The comparison of the risk assessment by PIRI on these revealed that PIRI correctly estimated the pollution potential of pesticides in greater than 80% of cases. A GIS version of PIRI is described in a companion paper in this volume. An erratum to this article is available at .  相似文献   

15.
By using observational data and MM5, an observational analysisand numerical study was conducted on the synoptic condition of a severe dust storm that was caused by a Mongolian cyclone whichoccurred from 6 to 8 April 2001. Results illustrated thatthe cyclogenesis was due to the isentropic potential vorticity (IPV) advection in the upper troposphere and the terrain modifiedbaroclinicity in the mid-lower troposphere. The Altai-Sayan complex of mountains blocked the lower level cold air and made the isentropic surface sharply steep. When the air slid down along the isentropic surface the increasing of baroclinicity anddecreasing of stability blew up the vertical vorticity development.The formation of the dust storm was a result of a cyclonic cold front passing across the area. The occurrence of this dust stormwas closely related to the strong surface wind, which was accompanied by a cold front passing, rather than the cyclogenesis, itself. Hence, the reason for the pre-front dust storm formulation was the formation of heating convection. Reasons behind the formation of a black storm (visibilitylower than 50 m), which occurred in the mid-north part ofInner Mongolia, lay in several aspects. Firstly, in thisarea the surface wind was strong, a direct result of thedownward transport in mid-lower troposphere. Secondly,the cold front passed over the effected area near sunsetso the air obtained much more surface heating to form adeeper mixed layer (ML). Thirdly, cooperation between thelower level wind and the terrain made the atmosphere inthis area and acquired the maximum advective contributionnecessary to form a deep post-front ML. The sensitivityexperiment revealed that surface heat flux was important to the frontal lifting. In addition, the forcing of surface heating wasalso seen as the primary forcing mechanism of frontogenesis. Meanwhile, removal of the surface heat flux made the atmosphericstratification became stable and the pre-storm ML very shallow,which weakened the strength of the dust storm.  相似文献   

16.
A pilot scale test facility of a circulating fluidized bed incinerator was established to generate design and operation data and help assess the technical feasibility for industrial applications. The use of high turbulence in the combustion zone and feeding an acid-capturer directly into the incinerator to absorb acid gases eliminates the costly afterburner and scrubber. This paper presents some systematic incineration tests of uniform industrial wastes such as paper mill sludge cake, rubber waste and petroleum coke. Sludge cakes with high moisture and low heating values can be treated to a low emission level by co-firing with coal. The high superficial gas velocity has improved combustion efficiency but increases NOx emissions. However, sulphur content has almost no influence on sulphur retention. The problems of CO/NOx emissions and circulation stability are also discussed.  相似文献   

17.
Methane emission monitoring has become increasingly essential for diffusive area sources, especially for landfills, which contribute to a significant fraction of the total anthropogenic methane emission globally. Statutorily, methane emission rate from landfills in Germany shall be examined on a semiannual basis; however, an appropriate approach has yet to be developed and adopted for general use. In this study, a new method is proposed based on experimental results, which utilizes a TDLAS (Tunable Diode Laser Absorption Spectroscopy) instrument – GasFinder2.0® system and a dispersion model LASAT (Lagrangian Simulation of Aerosol Transport) as the measurement device and calculation model, respectively. Between April 2010 and December 2011, a research project was conducted at a pilot scale landfill in the south of Germany. Drawing on the extensive research into this pilot project, an effective strategy of measurement setup was determined. Methane concentration was measured with GasFinder2.0® system in the upstream and downstream sections of the project site, while wind and turbulence data were measured simultaneously by an ultrasonic anemometer. The average methane emission rate from the source can be calculated by using the results as input data in the dispersion model. With this method, site-specific measurement approaches can be designed for not only landfills, but also different diffusive area sources with less workload and lower cost compared to conventional FID (Flame Ionization Detector) method.  相似文献   

18.
The reuse of waste materials requires the development of assessment methods for the long-term release of pollutants (source term) from wastes (or materials containing wastes) in contact with water. These methods depend on the scenario conditions: characteristics of the materials (especially physical structure and composition), contact with water… The scenario studied here is a water storage reservoir for fire extinguishing. The reservoir construction is made of a mixture of hydraulic binders and air pollution control (APC) residues from municipal solid waste incinerator (MSWI). The modelling of the source term is performed in five steps ranging from the physico-chemical characterisation of the material to the validation of the proposed model by means of field simulation devices. This paper follows a first publication on source term modelling using laboratory tests which therefore concerns the comparison of the results obtained with the previously established model. The first laboratory scale simulation test aims at taking into account the role of the leachate carbonation in the leaching behaviour of the studied material. The results obtained show that air carbonation of the leachate does not fundamentally change mass transfer mechanisms of easily soluble species (especially for alkaline metals). For these species, the use of the apparent diffusional model (model proposed in the previous paper) is, therefore, at first, a satisfactory solution for the prediction of long term leaching behaviour. The field scale test enables us to validate and calibrate the release model determined on a laboratory scale basis.  相似文献   

19.
In this study, a series of laboratory chamber tests was carried out to evaluate the applicability of a porous concrete pile fabricated with recycled aggregates for soft ground improvement. The recycled aggregate porous concrete pile (RAPP) has been developed to replace natural aggregates and to overcome technical problems associated with the conventional compaction piling systems. The laboratory chamber tests for evaluating the performance of RAPP were carried out with a cylindrical mold of 280?mm in internal diameter and 580?mm in height. A replacement area ratio of 5?% and three different loading steps were applied in the chamber tests. The experimental results of the surface settlement, excess pore pressure and vertical stress distribution versus time were compared with those of the sand compaction pile (SCP) reinforced composite ground under the same experimental condition. In addition, the experimental results were compared with the numerical simulation using ABAQUS. The current study shows that the settlement reduction in the RAPP-reinforced system is?significantly enhanced due to load transfer from the soil formation to the RAPP. Furthermore, the comparison of consolidation rates shows that the RAPP can also accelerate the consolidation of soft clay formation because the RAPP behaves as a vertical drain.  相似文献   

20.
When using catalytic flue gas cleaning, several flue gas compounds may influence oxidation reactions of hazardous volatile organic compounds, possibly leading to lower reaction rates and, thus, to an incomplete destruction. Experimental investigations were performed with regard to the influence of selected flue gas compounds, like hydrogen chloride, sulfur dioxide, oxygen, and water vapour, on the catalytic destruction behavior of chlorobenzenes under flue gas cleaning conditions of an incineration plant. For this purpose, a metal oxide catalyst was operated at different temperatures at a space velocity of 3600 h-1 in a laboratory-scale fixed bed reactor with model flue gases, and with real flue gases generated from the TAMARA waste incineration plant. The results obtained from the studies with model flue gas were analyzed with respect to reaction kinetics. These kinetics were applied for comparison with the experimental data gained in the real flue gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号