首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A full scale experiment has been performed in a streetcanyon, the Rue de Strasbourg in Nantes (France). Thiscampaign, the Nantes'99 experiment, provided a detaileddata base documenting, amongst others, the production ofturbulent kinetic energy (TKE) by vehicles within thestreet. Airflow and CO concentration measurements have beenanalysed during days with low wind perpendicular to thestreet axis, i.e. for conditions expected to greatly favourthe enhancement of the turbulence produced by traffic onflow and dispersion within the street canyon. It is shownthat traffic is associated with an increase in turbulentkinetic energy at the lowest levels of the street,especially at the leeward side of the street. It issuggested that turbulent kinetic energy increases with thenumber of vehicles up to a threshold value and thendecreases when vehicles form a `block' shape that limitsthe additional production of turbulence. Moreover, it issuggested that traffic-produced turbulence affectspollutant dispersion reducing CO concentration at the lowerlevels of the leeward side of the street from a thresholdvalue of TKE equal to about 0.15 m2 s-2. On the other hand, high traffic density generates less turbulencewhich in turn leads to a lower pollutant dispersion.  相似文献   

2.
    
Microscale computational fluid dynamics (CFD) modelsdeveloped in different European countries were applied towell defined test cases comprising a variety of 2 and 3dimensional configurations for which measurements from windtunnel or field studies were available. This paper presentsthe results of five CFD codes employing the widely used`standard k--model' (CHENSI, CHENSI-2, MIMO, MISKAM, TASCflow) for a street canyon in Hannover, Germany(Göttinger Strasse). Firstly the characteristics of theflow field predicted by the different codes are comparedwith high spatial resolution wind tunnel measurements;secondly the calculated concentration fields are comparedwith field and wind tunnel data. Both agreements (e.g. forthe general flow and concentration fields) anddisagreements (e.g. for the level of concentration) areobserved in the comparison. The discussion aims atexplaining the differences along with giving somesuggestions to CFD model users on how to calculate suchcomplex flows, but also to experimentalists on whereconcentration measurements should be taken in order to bemore representative for a whole street and to avoiddistinct local effects.  相似文献   

3.
The dominating source of particles in urban air is road traffic. In terms of number concentration, its main contribution is within the range of ultrafine particles (Dp < 100 nm). The dispersion conditions, i.e. transport and dilution, of the submicrometer particles are expected to be like for gases and therefore the particle concentrations in a street canyon can be calculated using gaseous pollutants dispersion models. Such processes, like coagulation or condensation, are less important due to the short residence time within the street canyon environment.Two extensive measuring campaigns were conducted in the street Jagtvej in Copenhagen, Denmark. The particle size distributions were measured by a Differential Mobility Analyser (DMA) coupled to a particle counter, providing high time resolution data (1/2 hourly) on a continuous basis. Measurements of NOx, CO and meteorological parameters were also available. The measured particle number concentrations, especially below 100 nm, reveal very similar dependence on the meteorological conditions as the NOx concentrations. This underpins the conclusion that dilution properties are similar for particles and NOx. For particle sizes over 100 nm, somewhat different behaviour is observed. This points toward existence of additional particle sources, not related to traffic emissions within the street canyon. A significant contribution is believed here to be attributed to long-range transport. The total particle emission from traffic, including daily variation and size distribution, has been calculated using the OSPM dispersion model. Results are in accordance with a previous analysis based on statistical modelling.  相似文献   

4.
Concentration fields of different pollutants that spread outside two roadtunnels predicted with a CFD code will be presented. The solution domain represents the city area located between two tunnel outlets – tunnel Strahov and tunnel Mrazovka in Prague. The vicinity of both tunnels is a heavily built up area with tall buildings forming typical street canyons. The CFD modelling predicts the situation after the tunnel Mrazovka will be finished and traffic will increase considerably between both tunnels. Namely, an interest was given to the prediction of dispersion of emissions leaving both tunnel and the area touched by the traffic. For the CFD predictions, a method previously developed for moving vehicles was used. The method uses combination of Eulerian and Lagrangian approaches to moving objects and is capable of modeling different speeds and traffic rates of cars as well as traffic-induced turbulence. Influence of several meteorological parameters was studied, namely wind speed and direction and traffic parameters, like traffic rates and speed of cars. The method separates contributions from different sources to the total concentration field, namely from background, tunnel outlet and roadway. Results are presented in the form of horizontal and vertical concentration fields of NOx.  相似文献   

5.
The PHOENICS Computational Fluid Dynamics (CFD) software package has been used with a standard k- turbulence model to simulate the three-dimensional dispersion of air pollutants in an urban street canyon. In all cases, a vortex was formed within the street canyon, characterized by updrafts near the upwind buildings and down-drafts near the downwind buildings. Contours of pollutant concentrations over a transverse vertical plane at mid-canyon show pollutants circulating within the vortex, with higher concentrations at the leeward face than at the windward faces, and higher concentrations above downwind buildings than above upwind buildings. Longitudinal distributions of pollutant concentrations at leeward and windward faces are characterized by higher concentrations at mid-block and lower concentrations at the ends. These results agree qualitatively with previous wind tunnel findings such as those of Hoydysh and Dabberdt (1988) and Wedding et al. (1977). The results also suggest that the k- turbulence model is satisfactory for simulating the effect of turbulence on dispersion of pollutants in street canyons  相似文献   

6.
In this study, an assessment has been made on the wind speed; temperature and atmospheric pressure were analyzed by considering meteorological variables for selected high ozone cases. The Systems Applications International Meso-scale Model (SAIMM), a prognostic meteorological model was used to develop the 3-dimensional meteorological inputs to a chemical model. Meteorological conditions favorable for high ozone concentrations appear when Istanbul and the surrounding region is dominated by an anticyclonic pressure system. During the ozone favorabledays, south and southwesterly winds with low wind speed influence Istanbul. We presented wind field simulations for a case study in explaining the ozone formation mechanism over Istanbul.  相似文献   

7.
The wind-driven flow patterns and the dispersion of vehicle exhaust pollutants released at street level has been simulated with the three-dimensional (3-D) dispersion model ADREA-HF (Andronopoulos et al., 1993), for idealised two-dimensional urban fetches occupied by buildings with slanted roofs. The simulation used oncoming atmospheric boundary layer characteristics corresponding to realistic above-town wind characteristics, as measured in reference wind tunnel experiments (Rafailidis, 1997). At that stage, analysis was limited to neutral stability conditions only. Firstly, the quality assurance of the numerical model was investigated in terms of the sensitivity to different grid allocations. The modelling results were corroborated by comparison with wind tunnel measurements in a similar two-dimensional domain (Pavageau et al., 1997). The numerical modelling replicated well the high degree of non-uniformity in the dispersion field in the test street, and the results agreed satisfactorily with the experimental measurements. The reasons for the differences observed have been investigated. With the model thus validated, three different exhaust release scenarios have been tested, keeping the same overall emission rate but different spatial patterns of street-release. The effect of the different street-release scenarios was found to be only marginal, with the dispersion patterns on the sidewalls affected only locally, close to the street level.  相似文献   

8.
Sensitivity experiments were performed using a large-eddy simulation (LES) turbulence model of the ocean surface boundary layer. Parameters defining wind and wave forcing were varied to help understand how different forcing affects the formation and dispersive qualities of Langmuir circulation (LC). Comparison of the model with observed surface velocity variance shows a consistent linear increase in velocity scale with increasing wave Stokes drift, however, the model systematically under predicts the velocity scale for large Stokes drift. Results using particle trajectories show that in open-ocean conditions, wave forcing dominates the structure of near surface turbulence causing organized LC cells that actively collect surface material. With weak waves, surface particles display a more random pattern in comparison to strong wave cases. Analysis of the turbulence kinetic energy budget shows that the reduction in wave forcing is offset by shear production, which produces less organized patterns in surface material in comparison to LC.  相似文献   

9.
The formulations and evaluation of ROADWAY-2, a near-highway pollutant dispersion model, are described. This model incorporates vehicle wake parameterizations derived from canopy flow theory and wind tunnel measurements. The atmospheric velocity and turbulence fields are adjusted to account for velocity-deficit and turbulence production in vehicle wakes. A turbulent kinetic energy closure model of the atmospheric boundary layer is used to derive the mean velocity, temperature, and turbulence profiles from input meteorological data. ROADWAY-2 has been evaluated using SF6 tracer data from General Motors Sulfate Dispersion Experiment. The model evaluationresults are presented and discussed.  相似文献   

10.
Since October 1998 two DOAS instruments were installed at the level of the first floor and at the top of a building located in St. Petersburg at Pestelya Street. The collected datacovers the time period of December 1998–March 2001, and include concentrations of benzene, toluene, NO and NO2, ozone and SO2. There is also an additional information about the traffic intensity and meteorological conditions. The results of the analysis of this data set, using the OSPM model, are presented here with the goal to understand the features of the air pollution dispersion in this street canyon and to analyse the information about the emission factors of the vehicles. In particular, the model results are used for the solution of the inverse problem of reconstructing the emission factors from measured concentrations. The results obtained indicate that most of the concentrations are well inside the Russian standards with the only exception of NO2 (mean and 98-th percentile are equal to 57.8 and 119.2 g m-3 for the street level). The same values for benzene are 18.5 and 62.6, respectively. Emission estimates show that there is a possibility that the NOx and benzene basic emission factors recommended by the Russian national guidelines could result in overestimating the traffic emissions. These considerations are supplemented with the model sensitivity tests carried out in connection with the problem of predictability of NO2 concentrations in the street canyon. Tests indicate that NO2 concentrations are not very sensitive to NOx emissions because of the usually low urban background ozone levels.  相似文献   

11.
Aspects of Langmuir circulation (Lc) which relate to the dispersion of floating material are reviewed. These include convergence, dispersion by advection (particularly of a plume of floating oil when wind and current are in different directions) and the spread and dispersion by cell instability or breakdown first described by Csanady. There are, however, processes which compete with Lc to diffuse floating material. In shallow tidally mixed seas, where the environmental impact of an oil spill may be greatest, cross-wind dispersion caused by Lc will dominate over that produced by bottom turbulence if the ratio of the wind speed, W, to current, U, is sufficiently large. Observations and rough estimates suggest a transition near W/U=15. A simple model is devised to estimate cross-wind dispersion in shallow unstratified waters when turbulence generated at a flat seabed dominates that produced by Lc, but when the effects of Lc are still evident in aligning filaments of oil, as may commonly be the case in moderate winds in coastal or continental shelf waters.  相似文献   

12.
Traffic emits particles under 1 m. The particles arethe most responsible to particle-bound polycyclic aromatichydrocarbon (pPAH) which can impact human health. To assessthem as health hazards, we monitored diurnal changes in theconcentration and distribution of pPAH near roads in Tokyo.The total pPAH concentration was determined using aphotoelectric aerosol sensor (PAS) which ionized PAH-adsorbingparticles. The total pPAH concentration was compared withchemical analyses by gas chromatography/mass spectrometry(GC/MS). Two sampling sessions, one in August and one inSeptember 2000, were done at three sampling sites at the Hongo Campus of the University of Tokyo. Monitoring was every two minutes for six consecutive days for the first session and for seven consecutive days for the second session.Correlation of the pPAH concentration with traffic flow andwith meteorological conditions were also assessed. The pPAHconcentration varied in the same manner on all days: it sharplyincreased in the early morning by a sudden burden of traffic, and it rapidly decreased during the daytime, probably owing tophotodegradation and/or dilution by rising in the mixingzone. The local wind field, and consequently thetransportation of pPAH from the road, were stronglyinfluenced by the configuration and location of thesurrounding buildings. The pPAH clearly changed in 1- and0.5 day cycles, particularly at the roadside.  相似文献   

13.
A wind tunnel study has been undertaken to assess theinfluence of solar-induced wall heating on the airflowpattern within a street canyon under low-speed windconditions. This flow is normally dominated by large-scalevortical motion, such that the wind moves downwards at thedownstream wall. In the present work the aim has been toexamine whether the buoyancy forces generated at this wallby solar-induced heating are of sufficient strength tooppose the downward inertial forces and, thereby, changethe canyon flow pattern. Such changes will also influencethe dispersion of pollutants within the street. In theexperiments the windward-facing wall of a canyon has beenuniformly heated to simulate the effect of solar radiation.Four different test cases, representing different degreesof buoyancy (defined by a test Froude number, Fr), havebeen examined using a simple, 2-D, square-section canyonmodel in a wind tunnel. For reference purposes, the neutralcase (no wall heating), has also been studied. The approachflow boundary layer conditions have been well defined, withthe wind normal to the main canyon axis, and measurementshave been taken of canyon wall and air temperatures andprofiles of mean velocities and turbulence intensities.Analysis of the results shows clear differences in the flowpatterns. As Fr decreases from the neutral case there arereductions of up to 50% in the magnitudes of the reverseflow velocities near the ground and in the upward motionnear the upstream wall. A marked transition occurs at Fr 1, where the single dominant vortex, existing at higher Fr values, weakens and moves upwards whilst a lower region of relatively stagnant flow appears. This transition hadpreviously been observed in numerical model predictions butat a Fr at least an order of magnitude higher.  相似文献   

14.
The thermal effects on the airflow within a street canyon, which are produced by the variation of direct solar heating of the street sides and ground, are examined in this article. The investigation is based on the experimental results of the Nantes'99 campaign and numerical simulations performed with the Computational Fluid Dynamics (CFD) code CHENSI using the standard k- model. The Nantes'99 experimental campaign was performed in a North-to-South oriented central street canyon of Nantes, France. It was observed that a thin thermal layer develops locally within a few centimetres from the heated wall. It is anticipated that, the convective flow close to the windward wall, which was visualised during the experiment, carries air masses from the street level upwards, where normally cleaner air is transported. Consequently, thermal effects may be important for the air quality in the street.Based on the temperature and wind flow measurements, the flow and temperature fields were simulated first in two dimensions with the CFD code CHENSI. It was found that CHENSI overestimates the thermal effects on the canyon airflow showing the main re-circulation simulated in the isothermal case to change into two counter-rotating vortices after the inclusion of the heating of the windward wall. A reason for this overestimation is possibly the temperature wall function implemented for such thin thermal boundary layers in conjunction with the limitations in grid resolution.  相似文献   

15.
Air quality in the Mexican cities of Monterrey, Nuevo Leon, and Mexicali, Baja California, has suffered great detriment in recent years. It is well known that meteorology is one of the main factors affecting the dynamics of pollutants in the atmosphere. Here, the Penn State/NCAR Meteorological Mesoscale Model (MM5) meteorological system was applied to identify meteorological conditions conducive to high-ozone concentrations in such regions. Two summer 2001 ozone episodes for each geographical domain were selected with the aid of a classification and regression tree analysis technique. Model response to changes in its physical parameterization, horizontal grid resolution, and data assimilation schemes were assessed. Once a suitable configuration was selected, performance statistics were computed for model validation. MM5 simulated satisfactorily the meteorology of such episodes, yielding indexes of agreement of 0.4–0.8 for wind speed and 0.67–0.95 for temperature, on average. However, MM5 tended to underestimated temperature and overestimated wind speed. Froude numbers were calculated to analyze the impact of the terrain complexity on wind circulation. It was concluded that in both cities, wind convergence zones might enhance high-ozone concentrations. These results improve our understanding of the atmospheric processes exerting effect on air pollution within these airsheds.  相似文献   

16.
Spatial Variability and Source-Receptor Relations at a Street Intersection   总被引:1,自引:0,他引:1  
A wind tunnel study of dispersion at a simple urban intersection comprising two perpendicular streets is described. Concentration and flow field measurement were undertaken to determine the importance of the exchange of pollutants between the streets and to investigate source-receptor relationships at the intersection. The results showed that only in a symmetrical situation were exchanges negligible and that small departures from symmetry, brought about in the experiments through an off-set in the street alignment or a change of orientation relative to the wind, were sufficient to establish significant exchanges. The results also showed that significant structure appeared in the concentration fields in the streets as a result. Examples are shown where concentrations on one side of a street are entirely due to emissions from the perpendicular street, whereas on the opposite side concentrations depend on emission upwind in the same street as the receptor. The results imply that exchanges between street systems are likely to be the norm in practice and that the consequences of such exchanges are not confined to the immediate vicinity of the intersection.  相似文献   

17.
Nose-level measurements of air toxics were made along a busy urban street in Ottawa, Canada for 2 hr periods during morning, noon, and afternoon rush hours in the winter and summer of 2000. Measurements were also made in a commuter car and a transit bus during morning and afternoon commutes in 2000. The main objectives of the study were to establish a database, to determine temporal and seasonal variations and to determine the contribution of motor vehicle traffic to the measured toxic substance concentrations. Ottawa is an appropriate choice of location for the measurement of motor vehicle related toxic and reactive compounds, as it has virtually no industrial sources that could be contributing to the ambient loadings. Samples were collected for a total of 165 volatile organic compounds and 25 carbonyl compounds. Sampling and analytical methodologyare discussed and results are presented. Toluene, ethylene andformaldehyde were the most abundant pollutants in Ottawa during both winter and summer. Total non-methane hydrocarbon concentrationwas measured as 100 g m-3 at nose-level measurements in Ottawa.  相似文献   

18.
Litter on roadways has to be removed for hygiene and to reduce pollution, amongst other reasons. Therefore, the effective operation of street sweepers is important in the collection of solid waste. In this article, the effectiveness of gutter brushes of street sweepers in removing different debris types, namely medium-size gravel, small and fine particles, and wet thin debris is studied by means of sweeping tests using a brushing test rig. Two types of gutter brushes, cutting and F128, are tested under a variety of operating conditions. The experimental tests provide a means of identifying suitable ranges of brush penetration for the different debris types under defined operating parameters such as brush angle of attack, brush rotational speed, and sweeper velocity. These ranges may provide sufficiently high removal forces and avoid the occurrence of sweeping problems such as backward sweeping and inappropriate bristle–surface contact. Optimum operating parameters for the three debris types studied, as well as a mixture of all of them, are determined. Lastly, the results indicate that, as far as the sweeping effectiveness is concerned, the F128 brush is the preferred one for the cases studied.  相似文献   

19.
针对石化行业面源无组织排放VOCs难以准确定量的问题,建立了基于开路式傅里叶变换红外光谱技术(OP-FTIR)的面源污染源源强反演模型,并进行了现场模拟试验。试验结果表明,风向、风速、大气稳定度、监测距离、数据处理周期等都是影响反演模型准确性的重要灵敏度参数。以反演源强QP与实际排放量Q的比值(QP/Q)为量化指标,对各影响因素进行优化处理,确定了构建反演模型适用的边界条件。当各灵敏度参数稳定于适用边界条件之内时,QP/Q为0.85~0.90。  相似文献   

20.
Microscale Computational Fluid Dynamics (CFD) models havebecome an efficient and common simulation tool forassessment and prediction of air quality in urban areas.The proper validation of such a model is a crucialprerequisite for its practical application. Within theframework of the European research network TRAPOS a workinggroup on computational fluid dynamics modelling wasestablished and model intercomparison exercises werelaunched. Different Computational Fluid Dynamics Codes wereapplied for simulating the wind flow and pollutantconcentration patterns in several test cases. The aim ofthe present model intercomparison is (1) to assess andallocate the source of differences that appear whendifferent CFD codes using the same turbulence model areapplied to well defined test cases and (2) to improve theknowledge base for model development and application.Throughout the series of model applications coveringmanifold urban configurations, the overall agreementbetween the various models and experimental data is fair.In spite of quantitative differences between the variousnumerical results, the models are capable of reproducingthe flow patterns and dispersion characteristics observedin urban areas but they show significant differences forthe turbulent kinetic energy field that controls thedispersion of pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号