首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amine scrubbing is the most developed technology for carbon dioxide(CO2) capture.Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance,and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2capture(PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas.The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.  相似文献   

2.
The oxycoal process with cryogenic oxygen supply   总被引:1,自引:0,他引:1  
Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.  相似文献   

3.
If hydrogen (H2) is to significantly reduce greenhouse gas emissions and oil use, it needs to displace conventional transport fuels and be produced in ways that do not generate significant greenhouse gas emissions. This paper analyses alternative ways H2 can be produced, transported and used to achieve these goals. Several H2 scenarios are developed and compared to each other. In addition, other technology options to achieve these goals are analyzed. A full fuel cycle analysis is used to compare the energy use and carbon (C) emissions of different fuel and vehicle strategies. Fuel and vehicle costs are presented as well as cost-effectiveness estimates. Lowest hydrogen fuel costs are achieved using fossil fuels with carbon capture and storage. The fuel supply cost for a H2 fuel cell car would be close to those for an advanced gasoline car, once a large-scale supply system has been established. Biomass, wind, nuclear and solar sources are estimated to be considerably more expensive. However fuel cells cost much more than combustion engines. When vehicle costs are considered, climate policy incentives are probably insufficient to achieve a switch to H2. The carbon dioxide (CO2) mitigation cost would amount to several hundred US$ per ton of CO2. Energy security goals and the eventual need to stabilize greenhouse gas concentrations could be sufficient. Nonetheless, substantial development of related technologies, such as C capture and storage will be needed. Significant H2 use will also require substantial market intervention during a transition period when there are too few vehicles to motivate widely available H2 refueling.
Dolf GielenEmail:
  相似文献   

4.
Carbon dioxide (CO2) adsorption on a standard metal-organic framework Mg2(dobdc) (Mg/DOBDC or Mg-MOF-74) and a tetraethylenepentamine (TEPA) modified Mgz(dobdc) (TEPA-Mg/DOBDC) were investigated and compared. The structural information, surface chemistry and thermal behavior of the adsorbent samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. CO2 adsorption capacity was measured by dynamic adsorption experiments with N2-CO2 mixed gases at 60℃. Results showed that the CO2 adsorption capacity of Mg/DOBDC was significantly improved after amine modification, with an increase from 2.67 to 6.06 mmol CO2/g adsorbent. Moreover, CO2 adsorption on the TEPA-Mg/DOBDC adsorbent was promoted by water vapor, and the adsorption capacity was enhanced to 8.31 mmol CO2/g absorbent. The adsorption capacity of the TEPA-Mg/DOBDC adsorbent dropped only 3% after 5 consecutive adsorption]desorption cycles. Therefore, this kind of adsorbent can be considered as a promising material for the capture of CO2 from flue gas.  相似文献   

5.

Corporate image, European Emission Trading System and Environmental Regulations, encourage pulp industry to reduce carbon dioxide (CO2) emissions. Kraft pulp mills produce CO2 mainly in combustion processes. The largest sources are the recovery boiler, the biomass boiler, and the lime kiln. Due to utilizing mostly biomass-based fuels, the CO2 is largely biogenic. Capture and storage of CO2 (CCS) could offer pulp and paper industry the possibility to act as site for negative CO2 emissions. In addition, captured biogenic CO2 can be used as a raw material for bioproducts. Possibilities for CO2 utilization include tall oil manufacturing, lignin extraction, and production of precipitated calcium carbonate (PCC), depending on local conditions and mill-specific details. In this study, total biomass-based CO2 capture and storage potential (BECCS) and potential to implement capture and utilization of biomass-based CO2 (BECCU) in kraft pulp mills were estimated by analyzing the impacts of the processes on the operation of two modern reference mills, a Nordic softwood kraft pulp mill with integrated paper production and a Southern eucalyptus kraft pulp mill. CO2 capture is energy-intensive, and thus the effects on the energy balances of the mills were estimated. When papermaking is integrated in the mill operations, energy adequacy can be a limiting factor for carbon capture implementation. Global carbon capture potential was estimated based on pulp production data. Kraft pulp mills have notable CO2 capture potential, while the on-site utilization potential using currently available technologies is lower. The future of these processes depends on technology development, desire to reuse CO2, and prospective changes in legislation.

  相似文献   

6.
CO2 capture and utilization (CCU) is an effective strategy to mitigate global warming. Absorption, adsorption and membranes are methods used for CO2 separation and capture, and various catalytic pathways have also been developed for CO2 utilization. Although widely researched and used in industry, these processes are energy-intensive and this challenge needs to be overcome. To realize further optimization, novel materials and processes are continuously being developed. New generation materials such as ionic liquids (ILs) have shown promising potential for cost-effective CO2 capture and utilization. This study reviews the current status of ILs-based solvents, adsorbents, membranes, catalysts and their hybrid processes for CO2 capture and utilization. The special properties of ILs are integrated into new materials through hybridization, which significantly improves the performance in the process of CCU.  相似文献   

7.
Microalgae: a promising tool for carbon sequestration   总被引:1,自引:1,他引:0  
Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10?C20 % in comparison with 1?C2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.  相似文献   

8.
Capturing flue gases often require multiple stages of scrubbing, increasing the capital and operating costs. So far, no attempt has been made to study the absorption characteristics of all the three gases (NO, SO2 and CO2) in a single stage absorption unit at alkaline pH conditions. We have attempted to capture all the three gases with a single wet scrubbing column. The absorption of all three gases with sodium carbonate solution promoted with oxidizers was investigated in a tall absorption column. The absorbance was found to be 100% for CO2, 30% for NO and 95% for SO2 respectively. The capture efficiency of sodium carbonate solution was increased by 40% for CO2 loading, with the addition of oxidizer. Absorption kinetics and reaction pathways of all the three gases were discussed individually in detail.  相似文献   

9.
Sorbents for CO_2 capture have been prepared by wet impregnation of a commercial active carbon(Ketjen-black, Akzo Nobel) with two CO_2-philic compounds, polyethylenimine(PEI)and tetraethylenepentamine(TEPA), respectively. The effects of amine amount(from 10 to70 wt.%), CO_2 concentration in the feed, sorption temperature and gas hourly space velocity on the CO_2 capture performance have been investigated. The sorption capacity has been evaluated using the breakthrough method, with a fixed bed reactor equipped with on line gas chromatograph. The samples have been characterized by N_2 adsorption–desorption,scanning electron microscopy and energy dispersive X-ray(SEM/EDX). A promising CO_2 sorption capacity of 6.90 mmol/gsorbenthas been obtained with 70 wt.% of supported TEPA at 70℃ under a stream containing 80 vol% of CO_2. Sorption tests, carried out with simulated biogas compositions(CH_4/CO_2mixtures), have revealed an appreciable CO_2 separation selectivity; stable performance was maintained for 20 adsorption–desorption cycles.  相似文献   

10.
Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons   总被引:3,自引:0,他引:3  
A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2 /g-sorbent in 15% CO2 /N2 at 75°C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2 . In addition, the developed sorbent could be regenerated easily at 100°C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.  相似文献   

11.
为了考察将电厂烟气注入采空区实现防火与气体封存的可行性,采用自制的煤大样量吸附装置测定了常温、常压条件下塔山烟煤对各种烟气成分的饱和吸附量,并对烟煤在空气和烟气氛围下对氧气的吸附行为进行了研究. 结果表明:将电厂烟气注入井下采空区,每t煤可封存约1.20 m3的CO2,烟气中SO2和NO2可全部被烟煤封存;在物理吸附阶段,烟煤对CO2的吸附量分别为对N2吸附量的13倍,对O2吸附量的41倍;在常温、常压条件下,烟煤对N2和CO2的吸附为物理吸附,12 h已基本达到饱和状态,但烟煤对O2的吸附随着时间的增加逐渐由物理吸附转变为化学吸附,因此在较长时间内未能达到平衡状态. 通过不同气体氛围下烟煤吸附氧气量的数据分析发现,将电厂烟气注入到采空区,因烟煤对氧气的吸附量降低了29%,可有效抑制其自燃反应的进行. 研究显示,电厂烟气注入采空区可实现节能减排和灾害治理的统一.   相似文献   

12.
树脂基固态胺吸附剂室温下对低浓度CO2的吸附性能研究   总被引:2,自引:1,他引:1  
以大孔甲基丙烯酸酯吸附树脂为载体,聚乙烯亚胺(PEI)为有机胺,采用液相浸渍法制备出固态胺吸附剂,并研究了其在室温下对低浓度CO2的吸附行为.同时,利用氮气吸附、热重分析和扫描电镜表征了材料的物理化学性质,并采用热重法和固定床吸附法考察了材料的CO2吸附性能.结果表明,大孔树脂担载50%PEI(质量分数)时吸附性能最佳,对纯CO2的最大吸附量为175 mg·g-1;CO2的吸附行为由扩散动力学与吸附热力学共同决定,低温有利于提高吸附容量;吸附剂对400 ppm~15%浓度的CO2都具有优异的动态吸附性能,其中对400 ppm CO2的吸附量达到86 mg·g-1,对15%CO2的吸附量达到150 mg·g-1;湿度对吸附起促进作用,相对湿度为10%时,对400 ppm CO2的吸附量提高至139mg·g-1;吸附剂具有优异的循环性能,具有直接空气捕集CO2的潜力.  相似文献   

13.
基于碳捕集的富氧燃煤烟气联合脱硫脱硝试验研究   总被引:1,自引:0,他引:1  
富氧燃煤烟气压缩液化CO2的高压低温工况为NO氧化为易溶于水的NO2提供了十分有利的条件.基于小型高压吸收试验装置,采用配制的富氧燃煤模拟烟气,在高压常温下进行了NO、SO2、O2与H2O的吸收反应试验.根据反应前后的气液产物分析,测定了不同组分比例与不同压力下混合气体中NO与SO2的转化率.NO氧化与吸收试验表明,NO转化为HNO3的比率随压力升高而增加,在0.5 ~2 MPa之间增加很快,在2 ~3 MPa之间增速趋丁平缓,压力达3 MPa以上时,90%以上的NO均转化为稀硝酸,且初始NO浓度越高,NO的转化率越大.混合气体中同时存在5O2与NO的联合吸收试验发现,只有少量的NO转化成了NO3-,SO2向H2SO4的转化率随压力升高而增加,初始SO2浓度越大,转化率越高.分析表明,SO2与NO同时存在时SO2先行转化为SO3,NO充当了催化剂,但SO2转化为SO3的一次转化率小于35%,反应酸液产物的多次循环能使SO2的转化率达到90%以上.建议的工艺流程中需采用两座吸收反应塔顺序脱除SO2与NO并回收稀酸溶液,有望在富氧燃煤发电捕集CO2系统中降低脱硫脱硝成本,部分地弥补富氧燃烧机组发电成本的增加.  相似文献   

14.
Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22°C. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.  相似文献   

15.
利用高铝粉煤灰预脱硅液作为载体原料,通过使用胺基化合物对载体改性制备低温CO_2吸附剂.应用6 sigma中的工具,对制备工艺进行优化,得到理想的吸附剂,并对吸附剂样品进行表征.结果表明制备的CO_2吸附剂表现出良好的CO_2吸附性能.此类CO_2吸附剂具有吸附容量高(160 mg·g~(-1))、吸附速率快、对设备腐蚀低、成本低廉等特点,是一种极具工业应用潜力的CO_2吸附剂.  相似文献   

16.
本研究以3种钢铁厂碱渣直接法固碳技术为研究对象,该技术将钢渣进行碳酸化处理,可快速永久地将CO2固化储存在钢渣中,气固相反应可分别在高压釜、泥浆反应器和超重力旋转床的水溶液中一步完成,并将其分别定义为T1、T2、T3.通过Umberto软件建立生命周期模型,对3种技术的资源环境影响进行评估.结果表明,T1的环境影响最高,其次为T3,T2的环境影响最小.技术评价显示,T3在技术效率、资源消耗、环境影响方面具有较好的综合效益.敏感性分析表明,加热效率的敏感性系数分别为0.97、0.97和0.46.转换率与温室气体排放的关系分别呈上升、倒U型和下降的变化趋势.提高加热效率、合理利用热源及选择合适的技术效率,将有利于技术优化,减少技术的环境影响,提高固碳效率.  相似文献   

17.
Air pollutant emissions represent a critical challenge in the green development of the non-ferrous metallurgy industry.This work studied the emission characteristics,formation mechanisms,phase transformation and separation of typical air pollutants,such as heavy metal particles,mercury,sulfur oxides and fluoride,during non-ferrous smelting.A series of purification technologies,including optimization of the furnace throat and hightemperature discharge,were developed to collaboratively control and...  相似文献   

18.
Global warming, the major environmental issue confronted by humanity today, is caused by rising level of green house gases. Carbon capture and storage technologies offer potential for tapering CO2 emission in the atmosphere. Adsorption is believed to be a promising technology for CO2 capture. For this purpose, a polyester was synthesized by polycondensation of1,3,5-benzenetricarbonyl trichloride and cyanuric acid in pyridine and dichloromethane mixture. The polymer was then characterized using FT-IR, TGA, BET surface area and pore size analysis, FESEM and CO2 adsorption measurements. The CO2 adsorption capacities of the polyester were evaluated at a pressure of 1 bar and two different temperatures(273 and 298 K).The performance of these materials to adsorb CO2 at atmospheric pressure was measured by optimum CO2 uptake of 0.244 mmol/g at 273 K. The synthesized polyester, therefore, has the potential to be exploited as CO2 adsorbent in pre-combustion capture process.  相似文献   

19.
Industrial development is an essential foundation of the national economy, but the industry is also the largest source of air pollution, of which power plants, iron and steel, building materials, and other industries emit large amounts of pollutants. Therefore, the Chinese government has promulgated a series of stringent emission regulations, and it is against this backdrop that research into air pollution control technologies for key industrial sectors is in full swing. In particular, during the 13th Five-Year Plan, breakthroughs have been made in pollution control technology for key industrial sectors. A multi-pollutant treatment technology system of desulfurization, denitrification, and dust collection, which applies to key industries such as power plants, steel, and building materials, has been developed. High-performance materials for the treatment of different pollutants, such as denitrification catalysts and desulfurization absorbers, were developed. At the same time, multi-pollutant synergistic removal technologies for flue gas in various industries have also become a hot research topic, with important breakthroughs in the synergistic removal of NOx, SOx, and Hg. Due to the increasingly stringent emission standards and regulations in China, there is still a need to work on the development of multi-pollutant synergistic technologies and further research and development of synergistic abatement technologies for CO2 to meet the requirements of ultra-low emissions in industrial sectors.  相似文献   

20.
Carbon dioxide (CO2) capture and storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological CO2 storage in climate policy. The storage capacity of Norway's Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If CO2 is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic challenges, including the large investment in infrastructure required, with related economies of scale properties. Thus CO2 capture, transportation and storage projects are likely to be more economically attractive if developed on a large scale, which could mean involving two or more nations. An additional challenge is the risk of future leakages from storage sites, where the government must take on a major responsibility. In institutional and policy terms, important challenges are the unsettled status of geological CO2 storage as a policy measure in the Kyoto Protocol, lack of relevant reporting and verification procedures, and lack of decisions on how the option should be linked to the flexibility mechanisms under the Kyoto Protocol. In terms of competitiveness with expected prices for CO2 permits under Kyoto Protocol trading, the relatively high costs per tonne of CO2 stored means that geological CO2 storage is primarily of interest where enhanced oil recovery is possible. These shortcomings and uncertainties mean that companies and governments today only have weak incentives to venture into geological CO2 storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号