首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA’s Office of Water in 2011.  相似文献   

2.
The Floristic Quality Index (FQI) has been used as a tool for assessing the integrity of plant communities and for assessing restoration projects in many regions of the USA. Here, we develop a modified FQI (FQImod) for coastal Louisiana wetlands and verify it using 12 years of monitoring data from a coastal restoration project. Plant species that occur in coastal Louisiana were assigned a coefficient of conservatism (CC) score by a local group with expertise in Louisiana coastal vegetation. Species percent cover and both native and non-native species were included in the FQImod which was scaled from 0–100. The FQImod scores from the long-term monitoring project demonstrated the utility of this index for assessing wetland condition over time, including its sensitivity to a hurricane. Ultimately, the FQI developed for coastal Louisiana will be used in conjunction with other wetland indices (e.g., hydrology and soils) to assess wetland condition coastwide and these indices will aid managers in coastal restoration and management decisions.  相似文献   

3.
Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p?<?0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0–1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R?=???0.87, p?=?0.001) and watershed N loads (R?=???0.86, p?=?0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.  相似文献   

4.
为研究我国典型滨海湿地环境评价方法,利用卫星遥感技术,结合地面生态调查,构建了以自然湿地面积比例、人工岸线比例等8项因子共同组成的指标体系,通过层次分析法和专家打分法进行权重赋值后,阐述了数据处理和计算的主要流程,提出了滨海湿地环境指数CWEI的概念和表征意义。应用上述方法对江苏盐城湿地珍禽国家级自然保护区进行了典型示范评价,结果表明该方法能够较好地反映滨海湿地环境状况与变化趋势。  相似文献   

5.
The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability.  相似文献   

6.
Despite California policies requiring assessment of ambient wetland condition and compensatory wetland mitigations, no intensive monitoring tools have been developed to evaluate freshwater wetlands within the state. Therefore, we developed standardized, wadeable field methods to sample macroinvertebrate communities and evaluated 40 wetlands across Northern California to develop a macroinvertebrate index of biotic integrity (IBI). A priori reference sites were selected with minimal urban impacts, representing a best-attainable condition. We screened 56 macroinvertebrate metrics for inclusion in the IBI based on responsiveness to percent urbanization. Eight final metrics were selected for inclusion in the IBI: percent three dominant taxa; scraper richness; percent Ephemeroptera, Odonata, and Trichoptera (EOT); EOT richness; percent Tanypodinae/Chironomidae; Oligochaeta richness; percent Coleoptera; and predator richness. The IBI (potential range 0–100) demonstrated significant discriminatory power between the reference (mean = 69) and impacted wetlands (mean = 28). It also declined with increasing percent urbanization (R 2 = 0.53, p < 0.005) among wetlands in an independent validation dataset (n = 14). The IBI was robust in showing no significant bias with environmental gradients. This IBI is a functional tool to determine the ecological condition at urban (stormwater and flood control ponds), as well as rural freshwater wetlands (stockponds, seasonal wetlands, and natural ponds). Biological differences between perennial and non-perennial wetlands suggest that developing separate indicators for these wetland types may improve applicability, although the existing data set was not sufficient for exploring this option.  相似文献   

7.
A portion of Arizona’s San Pedro River is managed as a National Riparian Conservation Area but is potentially affected by ground-water withdrawals beyond the conservation area borders. We applied an assessment model to the Conservation Area as a basis for monitoring long-term changes in riparian ecosystem condition resulting from changes in river water availability, and collected multi-year data on a subset of the most sensitive bioindicators. The assessment model is based on nine vegetation bioindicators that are sensitive to changes in surface water or ground water. Site index scores allow for placement into one of three condition classes, each reflecting particular ranges for site hydrology and vegetation structure. We collected the bioindicator data at 26 sites distributed among 14 reaches that had similar stream flow hydrology (spatial flow intermittency) and geomorphology (channel sinuosity, flood-plain width). Overall, 39% of the riparian corridor fell within condition class 3 (the wettest condition), 55% in condition class 2, and 6% in the driest condition class. Condition class 3 reaches have high cover of herbaceous wetland plants (e.g., Juncus and Schoenoplectus spp.) along the perennial stream channel and dense, multi-aged Populus-Salix woodlands in the flood plain, sustained by shallow ground water in the stream alluvium. In condition class 2, intermittent stream flows result in low cover of streamside wetland herbs, but Populus-Salix remain abundant in the flood plain. Perennial wetland plants are absent from condition class 1, reflecting highly intermittent stream flows; the flood plain is vegetated by Tamarixa small tree that tolerates the deep and fluctuating ground water levels that typify this reach type. Abundance of herbaceous wetland plants and growth rate of Salix gooddingii varied between years with different stream flow rates, indicating utility of these measures for tracking short-term responses to hydrologic change. Repeat measurement of all bioindicators will indicate long-term trends in hydro-vegetational condition.  相似文献   

8.
RecentAbstract. Recent approaches to wetland assessment have advocated a multilevel approach which incorporates assessments based on landscape (remote sensing) data, on-site but “rapid” methods, and intensive methods where quantitative data is collected. Brown and Vivas (2004) recently pro- posed an assessment method that uses remote sensing information (Landscape Development Index or LDI) and propose that it may also be usable as a quantified human disturbance gradient. The LDI was evaluated using a large reference wetland data set from Ohio using land use percentages within a 1 km radius circle of the wetlands. The LDI had interpretable and significant relationships with another human disturbance gradient (the Ohio Rapid Assessment Method for Wetlands or ORAM) and with most metrics and scores from the Vegetation Index of Biotic Integrity (VIBI) developed for use in the State of Ohio. Metrics from emergent wetlands had the most significant correlations with the LDI (10 of 10 metrics), followed by forested wetlands (8 of 10 metrics) and shrub wetlands (4 of 10). Poor correlation for VIBI scores and metrics of shrub wetlands was due to differences in attainable LDI scores based on ecoregion and natural buffers shielding the wetland from otherwise intensive land uses. The ORAM and VIBI were developed for use in wetlands in Ohio completely independent of the LDI. It is an important test of the LDI concept that so many interpretable and significant relationships occurred between the VIBI scores, VIBI metric values, and the ORAM scores. For the purposes of VIBI development, the LDI is an independent, quantified disturbance gradient that has provided an additional test of the VIBI. Given its theoretical underpinnings and the fact that it uses quantified land use percentages, the LDI has many advantages over more qualita- tive human disturbance gradients. Using land use percentages from increasingly smaller distances from the wetland edge (100-200 m) may improve the resolution of the LDI to detect on-site dis-turbances to a wetland which degrade its ecological condition. The LDI should be evaluated with other large reference data sets in other regions to evaluate its validity and usefulness as an assessment tool.  相似文献   

9.
In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.  相似文献   

10.
We propose a framework in which thresholds of potential concern (TPCs) and limits of acceptable change (LACs) are used in concert in the assessment of wetland condition and vulnerability and apply the framework in a case study. The lower Murrumbidgee River floodplain (the ‘Lowbidgee’) is one of the most ecologically important wetlands in Australia and the focus of intense management intervention by State and Federal government agencies. We used a targeted management stakeholder workshop to identify key values that contribute to the ecological significance of the Lowbidgee floodplain, and identified LACs that, if crossed, would signify the loss of significance. We then used conceptual models linking the condition of these values (wetland vegetation communities, waterbirds, fish species and the endangered southern bell frog) to measurable threat indicators, for which we defined a management goal and a TPC. We applied this framework to data collected across 70 wetland storages’, or eco-hydrological units, at the peak of a prolonged drought (2008) and following extensive re-flooding (2010). At the suggestion of water and wetland mangers, we neither aggregated nor integrated indices but reported separately in a series of chloropleth maps. The resulting assessment clearly identified the effect of rewetting in restoring indicators within TPC in most cases, for most storages. The scale of assessment was useful in informing the targeted and timely management intervention and provided a context for retaining and utilising monitoring information in an adaptive management context.  相似文献   

11.
Remote sensing of aquatic vegetation: theory and applications   总被引:2,自引:0,他引:2  
Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated from reflectance measurements, such as species composition, vegetation structure, biomass, and plant physiological parameters. However, proper use of these methods requires an understanding of the physical processes behind the interaction between electromagnetic radiation and vegetation, and remote sensing of aquatic plants have some particular difficulties that have to be properly addressed in order to obtain successful results. The present paper reviews the theoretical background and possible applications of remote sensing techniques to the study of aquatic vegetation.  相似文献   

12.
Human activities produced great impacts on wetlands worldwide. Taking Jiangsu Province, China, as a representative wetland region subject to extensive human activities, the aim of this study is to understand the conversion trajectory and spatial differentiation in wetland change from a multi-scale perspective. Based on multi-temporal Landsat images, it was found that the natural wetlands decreased by 11.2% from 1990 to 2006 in Jiangsu Province. Transition matrices showed that the conversion of natural wetlands to human-made wetlands (mostly aquaculture ponds) was the major form of natural wetland reduction, accounting for over 60% of the reduction. Percentage reduction and area reduc tion of natural wetlands were respectively quantified within different wetland cover zones using a moving window analysis. Average percentage reduction showed a decreasing tendency with increasing wetland cover. The high-cover and mid-cover zone presented the largest area reduction at the scales of 1-2 km and 4-8 km, respectively. Local hotspots of natural wetland reduction were mapped using the equal-interval and quantile classification schemes. The hotspots were mostly concentrated in the Lixiahe marshes and the coastal wetland areas. For the area reduction hotspots, the quantile classification presented larger area and more patches than the equal-interval classification; while an opposite result was shown for the percentage reduction hotspots. With respect to the discontinuous distribution of the natural wetlands, area reduction could be more appropriate to represent reduction hotspots than percentage reduction in the study area. These findings could have useful implications to wetland conservation.  相似文献   

13.
The structure and function of the coastal wetland ecosystem in the southern Laizhou Bay have been changed greatly and influenced by regional hydrological changes. The coastal wetlands have degraded significantly during the latest 30 years due to successive drought, decreasing of runoff, pollution, underground saline water intrusion, and aggravating marine disasters such as storm tides and sea level rising. Most archaic lakes have vanished, while artificial wetlands have been extending since natural coastal wetlands replaced by salt areas and ponds of shrimps and crabs. The pollution of sediments in inter-tidal wetlands and the pollution of water quality in sub-tidal wetlands are getting worse and therefore “red tides” happen more often than before. The biodiversity in the study area has been decreased. Further studies are still needed to protect the degraded coastal wetlands in the area.  相似文献   

14.
The monitoring of resource condition is receiving renewed attention across several levels of government in Australia. This interest is linked to substantial investment in environmental remediation and aquatic ecosystem restoration in particular. In this context, it is timely to consider principles which ought to guide the development and implementation of monitoring programmes for wetland ecosystems. A framework is established which places monitoring in the context of the strategic adaptive management of wetlands. This framework requires there has to be clear goals for the extent and condition of the resource, with these goals being defined within thresholds of acceptable variability. Qualitative and, where possible, quantitative conceptual models linking management interventions to management goals should be the basis of indicator selection and assessment. The intensity of sampling ought to be informed by pilot surveys of statistical power in relation to the thresholds of acceptable variability identified within the management plan.  相似文献   

15.
The transformation, composition, and distribution characteristics of nutrients in natural wetlands are significantly affected by human activities, such as large-scale water conservancy projects and agricultural activities. It is necessary to reveal the composing and distribution characteristics of nutrients for elucidating its complex removal and retention mechanisms in natural wetlands. In this study, the composition and the spatial distribution characteristics of nitrogen in a natural wetland in central China were illustrated and analyzed. The self-organizing map (SOM) model was used in this study to assess the water quality dataset of the wetland. The relationships between nitrogen and other water quality parameters were revealed by the visualization function of the SOM model with the pre-processed data; the modeling result was in agreement with the linear correlation analysis. The results indicated that the SOM model was suitable for the assessment of field-scale date of natural wetlands, and finally a potential approach for predicting the nutrients concentrations in natural wetlands was also found.  相似文献   

16.
We developed a series of tools to address three integrated tasks needed to effectively manage wetlands on a watershed basis: inventory, assessment, and restoration. Depending on the objectives of an assessment, availability of resources, and degree of confidence required in the results, there are three levels of effort available to address these three tasks. This paper describes the development and use of synoptic land-cover maps (Level 1) to assess wetland condition for a watershed. The other two levels are a rapid assessment using ground reconnaissance (Level 2) and intensive field assessment (Level 3). To illustrate the application of this method, seven watersheds in Pennsylvania were investigated representing a range of areas (89-777 km2), land uses, and ecoregions found in the Mid-Atlantic Region. Level 1 disturbance scores were based on land cover in 1-km radius circles centered on randomly-selected wetlands in each watershed. On a standardized, 100-point, human-disturbance scale, with 100 being severely degraded and 1 being the most ecologically intact, the range of scores for the seven watersheds was a relatively pristine score of 4 to a moderately degraded score of 66. This entire process can be conducted in a geographic information system (GIS)-capable office with readily available data and without engaging in extensive field investigations. We recommend that agencies and organizations begin the process of assessing wetlands by adopting this approach as a first step toward determining the condition of wetlands on a watershed basis.  相似文献   

17.
The International Joint Commission has recently completed a five-year study (2000–2005) to review the operation of structures controlling the flows and levels of the Lake Ontario – St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

18.
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that “biological integrity” is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland’s position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.  相似文献   

19.
We examined multi-objective environmental management as applied to pursuing concurrent goals of water treatment, biodiversity and promotion of recreation in constructed wetlands. A case study of a wetland established to treat landfill leachate, increase biodiversity, and promote recreation was evaluated. The study showed that attempts to combine pollution management with activities promoting biodiversity or recreation are problematic in constructed wetlands. This could be because the typical single-objective focus of scientific research leads to contradictions when planning, implementing and assessing the multi-objective use of wetlands. In the specific case of wetland filters for landfill leachate treatment, biodiversity, and recreation, there is a need for further research that meet practical needs to secure positive outcomes.  相似文献   

20.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号