首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
对昆明市2014—2018年空气质量和臭氧(O3)污染特征进行了分析,并结合臭氧污染观测资料和气象条件,对昆明市臭氧浓度与气象因子相关性进行了初步研究。结果表明:昆明市空气质量总体逐渐变好,臭氧浓度整体呈上升趋势,春季和夏季臭氧污染比较明显;臭氧浓度春季高,秋冬季低,高值主要集中在3—5月;臭氧污染主要出现在3—8月,7月最高;臭氧浓度与太阳辐射、气温、大气低层温度垂直分布、风速等总体呈正相关,与气压、相对湿度总体呈负相关。  相似文献   

2.
臭氧是城市光化学烟雾的主要成分,同时也是重要的温室气体,因此臭氧污染已经成为城市空气质量的重要因素.对重庆市渝中区2015年3个空气质量自动监测点臭氧浓度进行比较,并分析了臭氧与环境、日照、气温、挥发性有机物、NO2、PM10、PM2.5的相关性.结果表明:臭氧浓度与监测点周围环境有关;臭氧浓度呈典型的季节变化趋势,与日照、气温呈明显的正相关;臭氧浓度小时值变化出现明显的日变化规律;臭氧浓度与挥发性有机物呈正相关,与NO2、PM10、PM2.5有较好的负相关性.  相似文献   

3.
利用2013—2018年沧州市臭氧监测数据和气象数据,运用相关和百分位阈值法,分析了沧州市臭氧污染特征及气象因子对臭氧污染的影响。结果表明:沧州市臭氧浓度呈现明显的季节变化特征,春季和夏季最高;臭氧超标日数也集中在春夏季,臭氧浓度和超标日数均呈逐年增加趋势;在所有气象因子中气温与臭氧相关性最强,较高的气温是沧州市臭氧发生的必要条件,气温越高越容易导致高浓度的臭氧污染;绝大多数情况下,臭氧浓度与相对湿度呈负相关关系;降水量级及降水性质都会对臭氧浓度造成明显影响;风向与风速影响臭氧污染物的水平传输和垂直扩散,冬春季影响明显;春季臭氧浓度的增加与风速增大导致的混合层高度增加有重要的关系;颗粒物通过影响到达近地面的气象要素间接影响臭氧浓度。沧州地区臭氧超标日的出现伴随着一系列气象条件的共同改变,包括晴天少雨、混合层高度增加、风速增大、相对湿度降低及气温升高等气象特征,污染结束则伴随着相反的气象变化。  相似文献   

4.
北京城区臭氧日变化特征及与前体物的相关性分析   总被引:17,自引:0,他引:17  
对2012年12月至2013年11月北京城区12个自动空气监测子站的臭氧及其前体物的浓度进行了分析,探讨北京城区臭氧浓度的日变化特征以及与前体物的关系.研究发现,北京市城区臭氧在5~8月份维持相对较高浓度,其他月份则较低.臭氧浓度呈现单峰型分布,基本在15:00、16:00达到峰值;同时臭氧呈现较明显的“周末效应”,即周末臭氧浓度高于工作日浓度. CO、NO、NO2和NOx等前体物多呈现双峰型分布,与O3均呈显著的负相关性,相关性在夏季较低.通过大气氧化剂OX和NOx的拟合方程发现,冬季北京市城区OX在白天受区域O3影响相对较大,在夜间受局地NOx污染影响相对较大.计算了在理想情况下的城区NO2光解速率,春季、夏季、秋季和冬季的平均值分别为0.180,0.209,0.169,0.149min-1.在白天臭氧的高浓度时段城区O3、NO和NO2体现出近似光化学平衡态的特征.  相似文献   

5.
白璐 《环保科技》2023,(2):46-52
利用2019年辽宁省环境空气质量监测数据及气象观测数据,分析辽宁省臭氧污染特征及臭氧浓度变化的主要影响因素。结果表明:2019年辽宁省营口市臭氧污染相对最重,各城市臭氧浓度表现为春夏交替季污染较重,在5月达到臭氧浓度峰值;沈阳、鞍山、营口、铁岭等中部城市臭氧浓度处于高压后低压前、低压带底及低压前等天气系统控制时,臭氧浓度相对较高;各城市臭氧浓度受气温、风速、风向及相对湿度等因素共同影响,与气温、风速呈正相关,与相对湿度呈负相关,且与气温相关性最高。  相似文献   

6.
银川市臭氧污染特征及影响因素分析   总被引:2,自引:2,他引:0  
依据2014年银川市6个自动空气监测子站的监测数据,分析银川市臭氧浓度的污染特征,并对夏季臭氧相关气象因子进行分析。结果表明,从监测点位来看,银湖巷站点臭氧浓度最高,宁安大街次之,宁化生活区臭氧浓度最低。从时间变化规律来看,银川市臭氧浓度呈夏季最高,春季次之,秋季、冬季污染较低,其中臭氧月均浓度最大值出现在5月、6月。臭氧日变化呈单峰变化规律,夜间臭氧浓度较低,白天臭氧浓度较高。夏季臭氧浓度与二氧化氮、相对湿度呈显著的负相关性,与气温、风速呈显著正相关性。  相似文献   

7.
分析了2015年重庆市黔江城区2个自动监测站点PM10,SO2,NO2,O3日均值和小时均值,结合同期气象因素,对污染物浓度与气象因素进行分析.表明,PM10、SO2、NO2和O3春季平均值呈显著差异,PM10超标6天,SO2,NO2,O3污染水平较低,未超标;PM10、SO2和NO2呈现早晚双峰型,O3呈典型单峰型;风速与SO2和NO2浓度呈负相关,与O3浓度则呈正相关关系,风速较小时,利于PM10浓度降低,当风速达到一定程度,会导致PM10浓度升高;污染物浓度和相对湿度呈明显负相关;降水对大气污染物有削减作用.  相似文献   

8.
随着经济社会的发展,人们对环境质量更加重视,光化学烟雾成为影响城市环境空气质量的重要因素。利用东北地区大连市全年臭氧监测的时间浓度,对臭氧污染的浓度分布特征,时间以及季节变化特征进行了分析。结果表明:臭氧浓度变化受太阳辐射强度和气温的影响明显,呈单峰型变化,臭氧浓度季节变化趋势明显。春、夏季节臭氧浓度较高,秋季臭氧浓度次之,臭氧与大气中的NO、NO2、CO、VOCs等前体物的浓度、太阳辐射的强度以及CO的浓度都有不同程度的相关性。  相似文献   

9.
对闸北区空气自动监测站2009年SO2、NO2、PM10的浓度和气象参数变化特征进行研究,可吸入颗粒物的时间变化特征表明,总体上呈现冬春季高、夏秋季低;PM10与降水量、相对湿度、温度呈现一定的负相关性,但与风速的相关性随季节不同而不同,与气压略呈正相关性。对典型日和灰霾日PM10、SO2、NO2以及相应气象因子的特征进行了分析比较。  相似文献   

10.
上海市中心城区低空大气臭氧污染特征和变化状况   总被引:3,自引:0,他引:3  
对2005年1月~12月上海闸北地区地面空气臭氧污染浓度连续监测结果分析,表明臭氧小时浓度均值超过GB3095-1996<环境空气质量标准>二级标准160μg/m3的频率为2.88%,其中6月份超标率居全年之首,1月、2月和12月超标率为零.臭氧浓度日变化规律表明,日最大值出现在12时~14时之间,具有受污染地区光化学过程臭氧生成的典型日变化特征.臭氧浓度日振幅6月最大,2月最小.5月份臭氧月均浓度91μg/m3全年最高,最高小时均值浓度350μg/m3出现在5月19日,说明上海中心城区空气中臭氧生成可能受到前体污染物的浓度影响更大.太阳紫外辐射、气温、风速、风向、相对湿度、降水等气象因素的变化对O3变化的影响分析,在高温晴朗的天气中观察到NO2/NO比值与O3成显著线性关系.  相似文献   

11.
为了探讨太原市大气污染物在霾天气下的污染特征,2013年12月至2014年3月对太原市大气污染物(PM10、PM2.5、SO2、NO2、CO和O3)质量浓度进了收集研究。分析结果表明无论是霾还是良天气,PM2.5和PM10的相关性最好,PM2.5与NO2的相关性最差。O3与PM2.5的相关系数均大于0.7,表明O3与PM2.5的形成有着密切的关系。  相似文献   

12.
基于佛山市惠景城区2013年1月1日-12月31日SO2、NO2、O3、PM2.54种大气污染物的时序监测数据,分析其时序特征,4种污染物质量浓度的平均水平和离散程度表现为NO2PM2.5O3SO2。不同时间际的浓度变化以及污染物之间的互相关、自相关分析结果表明:(1)细颗粒污染、臭氧污染分别集中于冬春季和秋季。周一、周二的SO2、NO2、PM2.5浓度高于一周内的其他时日,O3则相反。尤其是周二NO2浓度显著高于其他日该值,可能与周一车流高峰期机动车直接排放NO转化耗时导致NO2峰值延迟有关。在12:00-15:00时段,SO2、NO2、PM2.5浓度最低,O3浓度最高,可能原因为中午高气温可促使地表污染物向高空扩散,而O3作为NO2的光解反应产物,其浓度水平更大程度上受制于太阳辐射强度。(2)4种污染物的自相关系数各不相同,整体上间隔期为1、3(天或时)的历史污染物浓度能够有效影响当前时刻的污染物浓度。SO2、NO2、PM2.5三者之间存在明显的正相关关系,而O3与NO2呈现弱负相关关系,可能与站点地理位置有关,即该站点PM2.5受机动车直接排放影响为主。O3除受NO2的制约外,更大程度上受太阳辐射的影响。  相似文献   

13.
基于2000~2015年香港地区的臭氧监测数据和气象数据,分析了香港的臭氧污染特征及气象因素对臭氧污染的影响。结果表明:(1)香港地区臭氧浓度呈现明显的季节变化特征,其中秋季春季冬季夏季,臭氧超标日集中在夏季和秋季,超标日发生在冬季和春季的情形极少。(2)2000~2015年香港臭氧日最大8h平均浓度(MDA8)年均浓度呈增长趋势,平均增长速率为0.77μg·(m3·a)-1,臭氧MDA8第90百分位数浓度同样呈增长趋势,增长速率为1.49μg·(m3·a)-1。(3)较高的气温是香港地区臭氧污染发生的必要条件,气温越高越容易导致更高浓度的臭氧污染。(4)绝大多数情况下,臭氧浓度与相对湿度间呈负相关关系,相对湿度越高,香港地区的臭氧MDA8平均浓度及第90百分位数浓度均会降低。(5)当香港发生臭氧污染时,盛行风往往从偏北风或偏东风转为偏西风。随着风速的增大,臭氧平均浓度变化不大,但是臭氧第90百分位数浓度会明显降低。(6)降水和云量是影响臭氧浓度的重要因素,连续多日的无雨或少雨天气是臭氧污染事件发生的必要条件,而随着云量的增加,臭氧平均浓度和第90百分位数浓度会持续降低。(7)在太阳总辐射量≤20 MJ·m-2或日照时长≤10 h的情况下,臭氧浓度与太阳辐射及日照时长呈正相关关系。然而,在太阳辐射强烈的情况下(太阳总辐射量20 MJ·m-2或日照时长10 h),随着太阳辐射增强或日照时长的增加地面臭氧浓度反而降低,这是因为太阳辐射强烈的情况常出现在雨后天晴的背景下,并盛行来自海洋的偏南风,使得臭氧污染不易形成。(8)香港臭氧超标日的出现往往伴随着一系列气象条件的共同改变,包括晴天少雨、辐射增强、边界层高度增加、相对湿度降低、风速变小以及气温升高等气象特征,污染结束则伴随着相反的气象变化。  相似文献   

14.
基于2000~2015年香港地区的臭氧监测数据和气象数据,分析了香港的臭氧污染特征及气象因素对臭氧污染的影响.结果表明:(1)香港地区臭氧浓度呈现明显的季节变化特征,其中秋季春季冬季夏季,臭氧超标日集中在夏季和秋季,超标日发生在冬季和春季的情形极少.(2)2000~2015年香港臭氧日最大8h平均浓度(MDA8)年均浓度呈增长趋势,平均增长速率为0.77μg·(m3·a)-1,臭氧MDA8第90百分位数浓度同样呈增长趋势,增长速率为1.49μg·(m3·a)-1.(3)较高的气温是香港地区臭氧污染发生的必要条件,气温越高越容易导致更高浓度的臭氧污染.(4)绝大多数情况下,臭氧浓度与相对湿度间呈负相关关系,相对湿度越高,香港地区的臭氧MDA8平均浓度及第90百分位数浓度均会降低.(5)当香港发生臭氧污染时,盛行风往往从偏北风或偏东风转为偏西风.随着风速的增大,臭氧平均浓度变化不大,但是臭氧第90百分位数浓度会明显降低.(6)降水和云量是影响臭氧浓度的重要因素,连续多日的无雨或少雨天气是臭氧污染事件发生的必要条件,而随着云量的增加,臭氧平均浓度和第90百分位数浓度会持续降低.(7)在太阳总辐射量≤20 MJ·m-2或日照时长≤10 h的情况下,臭氧浓度与太阳辐射及日照时长呈正相关关系.然而,在太阳辐射强烈的情况下(太阳总辐射量 20 MJ·m-2或日照时长 10 h),随着太阳辐射增强或日照时长的增加地面臭氧浓度反而降低,这是因为太阳辐射强烈的情况常出现在雨后天晴的背景下,并盛行来自海洋的偏南风,使得臭氧污染不易形成.(8)香港臭氧超标日的出现往往伴随着一系列气象条件的共同改变,包括晴天少雨、辐射增强、边界层高度增加、相对湿度降低、风速变小以及气温升高等气象特征,污染结束则伴随着相反的气象变化.  相似文献   

15.
利用2016—2020年近地面臭氧和气象逐时数据,基于相关性分析和概率统计方法,在分析臭氧敏感气象要素特征基础上,综合各气象因子对臭氧生成贡献大小,建立了广州逐时臭氧污染气象条件指数模型及等级标准,并进行了预报及检验.结果表明:(1)高浓度臭氧主要发生在高温低湿情况下,臭氧浓度及臭氧超标率均随着气温的升高而增加,当气温高于30℃时,臭氧浓度随温度的变化升高更为明显;臭氧浓度和超标率随着相对湿度的升高而逐渐降低,其中,当40%≤RH<50%时,臭氧浓度及超标率最高;当风速在1~2 m·s-1时,臭氧超标率最大.(2)对所建立的广州本地化的逐时臭氧污染气象条件指数模型和分级标准进行了检验评估,结果显示,臭氧污染气象条件指数等级越高,臭氧浓度和超标率也越大,说明该指数能够较好地表征臭氧污染天气的强弱.(3)基于欧洲中心高分辨率数值预报产品,根据污染气象条件指数模型,对广州3种不同天气类型下的指数预报进行对比验证,预报效果较好,说明该指数对臭氧污染天气预报有较好的指导意义.  相似文献   

16.
上海市中心城区低空大气臭氧污染特征和变化状况   总被引:2,自引:0,他引:2  
通过上海市中心城区空气质量自动监测点的监测数据,对2005年1~12月上海闸北地区低空(距地面约25m)大气臭氧(O3)污染浓度的连续监测结果进行了分析.结果表明,臭氧小时浓度均值超过GB3095-1996((环境空气质量标准》中二级标准(160pg/m^3)的频率为2.88%,其中6月份超标率居全年之首,1、2.12三个月超标率为零。臭氧浓度日变化规律表明,日最大值出现在12:00~14:00之间,具有受污染地区光化学过程臭氧生成的典型日变化特征。臭氧浓度日振幅6月最大,2月最小。5月份臭氧月均浓度91ug/m^3,为全年最高;最高小时均值浓度3501Jg/m^3出现在5月19日,说明上海中心城区空气中臭氧生成可能受到前体污染物的浓度影响更大。同时,分析了太阳紫外辐射、气温、风速、风向、相对湿度、降水等气象因素的变化对O3变化的影响,在高温晴朗的天气中观察到NO2/NO比值与O3成显著线性关系。  相似文献   

17.
以深圳近地面臭氧浓度和气象条件为研究对象,分析了深圳臭氧污染与气温、相对湿度、风速、气团轨迹等气象因素关系。结果表明,深圳臭氧污染与气象要素密切相关,一般在气温高于24℃,相对湿度在55%~85%,日平均风速低于2m/s,受到偏北气团影响时,深圳易出现臭氧污染。  相似文献   

18.
以南昌市2014—2016年空气环境监测数据为依据,参照新标准《GB3095-2012环境空气质量标准》,选取SO2、NO2、PM10、PM2.5、CO、O3共6个大气环境污染因子作为评价参数,采用模糊数学综合评价法计算各污染因子权重及其分配系数和隶属度,建立模糊关系矩阵和模糊权重矩阵,分析各大气污染因子对南昌市大气环境质量的影响,得到模糊综合评价结果。结果表明:南昌市总体大气环境质量为尚清洁(Ⅱ级),近三年空气质量在逐渐好转,可吸入颗粒物PM10和细颗粒物PM2.5是影响南昌市空气环境质量的主要污染物质,二氧化氮NO2污染呈逐年上升趋势,臭氧O3在近三年也呈上升趋势且上升幅度较大,应引起重视。  相似文献   

19.
臭氧污染是制约北京市环境空气质量持续改善的关键因子,气象是导致臭氧浓度超过国家标准的重要因素,探究气象要素与臭氧浓度之间的关系,对有效治理臭氧污染具有重要意义.本文分析了2018—2022年北京市地面臭氧浓度的演变特征,并利用气象要素和臭氧日最大8 h滑动平均浓度(O3-8 h)观测数据,基于广义相加模型和合成少数过采样技术,构建了适用于北京的臭氧非线性回归预测模型,识别了影响北京市O3-8 h浓度日际变化气象因子的重要程度.结果显示:(1)近5年北京市臭氧浓度仍处于高位波动阶段,5—9月是臭氧浓度超标最严重的时期.(2)回归模型对高浓度臭氧具有良好的预测能力,其对北京市5—9月O3-8 h浓度变化的方差解释率为83.3%.(3)基于回归模型发现,日最高气温、风向、紫外辐射强度、相对湿度、风速、地表平均气压与O3-8 h浓度之间均有显著的非线性关系,其中,日最高气温、风向和紫外辐射强度为主导O3-8 h浓度变化的气象要素.在高温、主导风向为偏南风、紫外辐射强度较强的气象条件下,...  相似文献   

20.
河南省2015-2019年大气污染时空变化特征研究   总被引:2,自引:0,他引:2  
河南省位于京津冀周边区域,其大气复合污染形势较为严峻.本研究利用河南省2015-2019年83个国控站点数据,综合探究了 PM10、PM2.5、SO2、NO2、CO和O3MAD8(臭氧日最大8h平均值)的时空变化特征.与2015年相比,2019年河南省PM10、PM2.5、SO2、NO2和CO年均浓度分别下降了 26....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号