首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of carbon pools in the live phytomass, necromass, and soil reservoirs have been analyzed in fallow arable lands of Novgorod oblast. The results show that the amounts of above- and belowground necromass increase with the age of fallows, while the dynamics of live phytomass have no distinct trend. Comparisons with archival data show that the stocks of soil organic carbon in the studied ecosystems have decreased by 1.39 t C/ha since 1983, which is equivalent to an annual loss of 0.03 t C/ha. The main factors accounting for changes in the carbon stocks of fallow soils are the initial organic carbon contents in topsoil, the intensity of agromeliorative measures taken during the period of agricultural land use, and carbon contents in soils of meadow communities typical for a given region (zone).  相似文献   

2.
In the soils of bog ecosystems studied in Plesetskii raion of Arkhangelsk oblast, 169 species and infraspecific taxa of algae have been recorded. Their flora includes typical divisions of soil algae and is dominated by Chlorophyta, which is typical for the soil–climatic conditions of the taiga zone in general and bog ecosystems in particular. The phytocenotic organization of algal groups can serve as an indicator of bog trophicity, since a certain trophicity level is characterized by an individual combination of dominant species, life forms, morphotypes, and ecological groups of soil algae.  相似文献   

3.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

4.
在施肥条件下确定平衡状态时,土壤有机碳含量水平对于正确评价土壤的固碳潜力和制定合理的有机物质分配措施具有重要意义。分析了前人研究的江西省有机碳储量数据并采用Jenny模型对长期不同施肥下有机碳动态数据进行模拟。结果表明,鄱阳湖生态区有机碳储量占全省的46%,以鹰潭地区最高,九江地区最低。施肥明显增强了土壤的碳汇作用,单施有机肥或有机无机肥配施(70F+30M、50F+50M、30F+70M、NPKM、NPK+S、NPK+P和NPK+C)处理的土壤有机碳含量明显高于施化肥处理,以南昌县的30F+70M、进贤县的NPKM和余江县的NPK+P处理最高,其平衡时有机碳含量和固碳潜力分别较施化肥处理提高了3061%和6115%、3017%和5496%、3826%和7479%。因此,提高鄱阳湖生态区农田有机碳密度和固碳潜力最有效方法是有机无机肥配施,其配施方式以猪粪配施化肥相对最好,配施比例以70%有机肥配施30%化肥为宜  相似文献   

5.
Changes to natural organic compounds by acid deposition and subsequent effects on Al mobilization are not well understood. The HUMEX catchment-scale acidification experiment in western Norway offers a unique possibility for an integrated assessment of these interactions. In this report, the soil and soil water chemical data from the HUMEX site, from before and after the onset of experimental acidification, are used to characterize the catchment. Changes in soil water chemistry are discussed and controls on dissolved organic carbon are addressed in relation to Al mobilization. Decreases in the concentration of dissolved organic carbon (DOC) and organic Al fractions were found in soil water after the treatment started. These changes were related to an increase in soil water sulphate concentrations. The sulphate levels showed a significant increase (on a 95% level) in four of ten soil horizons while nitrate remained nearly unchanged. In organic soils, where the dissolved organic carbon content was high, the major control for monomeric aluminum concentration appeared to be the amount of exchangeable aluminum in the soil. In mineral soils, the gibbsite dissolution may govern inorganic Al concentrations in soil water, though substantial undersaturation was found when DOC was high.  相似文献   

6.
长江三角洲水田保护性耕作制度的碳收集效应估算   总被引:11,自引:1,他引:10  
耕作制度对农田土壤有机碳的稳定和积累作用显著,探讨耕作制度演变下农田土壤碳库动态,将有助于农田土壤碳收集的技术选择及政策制定。利用已发表的田间定位试验数据,构建不同耕作制度下长江三角洲水田耕层土壤有机碳密度的估算模型。依据该区近20多年来耕作制度演变动态,对保护性耕作制度的土壤碳收集效应进行了初步估算。结果表明,油菜面积的扩大、小麦的少免耕和作物秸秆的还田分别约增加土壤耕层有机碳0.94 Tg、2.76 Tg和3.95 Tg,其中以麦稻复种转向油稻复种的单位面积碳收集效应为最高。最后,就碳收集效应估算的方法进行了相关讨论,并就土壤碳收集研究和如何提高土壤碳收集潜力提出了一些建议。  相似文献   

7.
The microbial biomass (Cbio), respiration (basal respiration (BR) and potential respiration (PR)), and derived indices for 520 independent soil samples of 117 different soils from the Czech Republic were statistically analysed. The broad range of soil samples allowed the stepwise breakdown of the database into six reasonable categories of soil: arable soils, loamy grassland soils, sandy grassland soils with weak organic matter content, sandy grassland soils with moderate organic matter content, forest soils with moderate organic matter content, and forest organic soils with rich organic matter content. Because soil microbiology lacks benchmarking values, the ranges of the microbial characteristics for these categories were stated and are presented here. The separation into soil groups narrowed the ranges enough to be useful for comparative purposes. The groups displayed significant differences in basal microbial parameters. The lowest microbial biomass was found in arable soils and grassland sandy soils with weak organic matter content. The highest microbial biomass was shown by loamy grassland soils and organic forest soils. Respiration displayed similar results to the microbial biomass. The derived indices revealed less significant differences confirming their inner-standard nature. The relationships between the soil contamination and microbial parameters were not explored because of the confounding effect of soil organic matter. However, it was not shown by the category of grassland sandy soils with weak organic matter content suggesting they could be especially suitable for the biomonitoring of harmful effects of chemicals on soil microorganisms.  相似文献   

8.
Knowledge about carbon and nitrogen in plants and soils and response to fence and graze in alpine ecosystems is still rudimentary because of extremely geographic situation. The purpose of this study was to compare the difference among carbon, nitrogen concentration, and content of unit area and dynamics of above- and below-ground biomass, soil organic carbon and total nitrogen between fencing and grazing alpine meadow. The results showed that total carbon and C: N radio in the aboveground tissue were significantly higher in fenced and ungrazing grassland (FU) than those in free grazing grassland (FG). In addition, the order of total carbon and nitrogen concentration of aboveground tissue of different function groups were not identical between them; The total carbon storage (TCS) per unit of aboveground tissue, roots and 0–30 cm soil layer increased after being fenced for 5 years from free grazing grassland (9255.17 g/m2) to fenced and ungrazing grassland (12637.10 g/m2) by 26.79%. The corresponding total nitrogen storage (TNS) increased by 751.42 g/m2. Furthermore over 95% TCS (TNS) come from 0–30 cm soil layer. However there were no significant differences between fenced and ungrazing grasslands of 10 years and 5 years. Therefore fenced to exclude grazing by Tibetan sheep and yaks was an alternative approach to sequester C to the soil in alpine meadow systems.  相似文献   

9.
通过对江苏省常熟市全市范围代表性水稻土采样并布置室内短期(20 d)培育实验,研究土壤有机碳矿化过程动态,并分析其与微生物生物量碳和水溶性有机碳含量的关系。结果表明:研究区域水稻土有机碳含量变化为488~2731 g/kg,平均为1807 g/kg,全氮含量变化为058~284 g/kg,平均为186 g/kg;微生物生物量碳、氮及水溶性有机碳含量分别为2940~1 2874,1854~8178和701~2879 mg/kg,且不同土属间存在显著差异(〖WTBX〗p〖WTBZ〗<005);土壤呼吸强度为3476~19168 mgCO2/(kg·d),平均为7993 mgCO2/(kg·d),不同土属间高低顺序为乌栅土>乌黄泥土>灰黄泥土>白土>黄泥土>乌沙土;培养期内有机碳日均矿化量为1076~6520 mgCO2/kg,平均为4046 mgCO2/kg,有机碳累计矿化量为21525~1 30213 mgCO2/kg,平均为80720 mgCO2/kg,不同土属间有机碳日均矿化量和累计矿化量变化趋势为乌栅土>乌黄泥土>乌沙土>白土>灰黄泥土>黄泥土;研究区域水稻土有机碳矿化率为307%~758%,但不同土属间差异不显著(p>005)。统计结果表明,土壤有机碳呼吸强度和日均矿化量与微生物生物量碳及水溶性有机碳之间均呈显著正线性关系,相关系数分别为0686、0594、0826、0749。〖  相似文献   

10.
We evaluated the accumulation and distribution of major and trace elements in agricultural soils of District 03 (DR03) in the State of Hidalgo, Mexico, irrigated with raw wastewaters for an average of 20 years. Samples of topsoils (0-30 cm depth) were extracted using a modified Tessier method. Total concentrations of the species tested were in the ranges of 675-1176 mg K kg(-1), 277.9-1001 mg Na kg(-1), 6,708-81,854 mg Ca kg(-1), 23,800-106,974 mg Mg kg(-1), 9.2-123.8 mg B kg(-1), 0.6-1.9 mg Cd kg(-1), 11.6-27.4 mg Cr kg(-1), 3.9-47.0 mg Pb kg(-1). Concentrations of As and Hg were very low. Concentrations of total Cd, Cr and Pb were generally below the maximum permissible levels set by the regulations of the European Union except for cadmium, which was in the middle of the maximum European range allowed for two soils. Regarding lead, one soil (S5) could reach the maximum permissible level of the EU in 6 more years of continued irrigation. On the other hand, contents of Pb in the most mobile fractions ("e" in this work) were significant (range: 3-28%). This distribution translated into concentrations of soluble plus exchangeable lead of approximately 2 mg Pb kg(-1) in three of six soils, significantly higher than the Swiss tolerance limit of 1.0 mg Pb kg(-1) for mobile fractions of lead in soils. Multivariate analysis of the data (Pearson correlation and principal component analysis) quantitatively confirmed that: (i) there is a strong covariance between boron contents and several variables representing the salinity of soils (electrolytic conductivity, a variety of alkaline and alkaline-earth total and fraction concentrations). It appears that there is a problem with high boron content in soils, although the salinity is high only for one of the soils (S3); (ii) a significant correlation among irrigation time, lead content (total, fraction easily exchangeable and bound to organic matter and sulfides) and organic carbon in soils was found; (iii) another association among irrigation time, total contents of cadmium, chromium and boron, and organic carbon was observed.  相似文献   

11.
丰乐河流域表层土壤有机碳空间变异特征研究   总被引:1,自引:0,他引:1  
土壤有机碳含量空间变异特征的研究对于区域土壤资源的可持续利用具有重要意义。在ArcGIS技术的支持下对丰乐河流域表层土壤(0~20 cm)有机碳(SOC)含量的空间变异特征进行了研究。结果表明:丰乐河流域SOC含量为1431±4.50 g·kg-1,不同土地利用类型下SOC含量差异显著(p<001)。其中,林地SOC含量的均值最大,为1558±593 g·kg-1;水田和旱地次之(分别为1539±309 g·kg-1、1146±304 g·kg-1);园地最小(1109±348 g·kg-1)。流域SOC含量变异系数(CV)为3144%,属中等变异程度。其中,林地的CV为3806%,在4种土地利用类型中为最大;园地、旱地的CV分别为3138%、2652%;水田的CV最小,为2007%,表明人类活动影响表层土壤有机碳含量的变异程度。研究区表层SOC半方差模型为球状模型,块金效应小于25%,存在强烈的空间自相关性,且空间变异主要由结构性因素引起。SOC含量空间分布的各向异性显著,在南北方向上变异程度最为剧烈。SOC含量空间分布表现为东北部、西南部较高,西北部偏低,总体呈斑块状分布  相似文献   

12.
退耕还湖后菜子湖湿地土壤理化性质及微生物量变化   总被引:3,自引:0,他引:3  
以不同退耕年限下菜子湖湿地土壤和邻近原始湿地及仍耕作油菜地为研究对象,分析退耕还湖后土壤理化性质和微生物量碳氮变化。研究结果表明:随着退耕还湖年限增加,土壤容重逐渐降低,土壤含水量和粘粒含量逐渐增加,土壤有机质和全氮含量逐渐增加,而土壤全磷含量降低;表层土壤微生物量碳含量为33377~70075mg/kg,表层土壤微生物量氮含量为3080~6401 mg/kg,且均有退耕还湖后升高趋势;土壤微生物量碳与土壤有机质、全氮、pH呈极显著相关(P<001),与土壤粘粒含量显著相关(P<005);土壤微生物量氮与土壤有机质、全氮、容重呈极显著相关(P<001),与pH显著相关(P<005)。分析表明,退耕还湖后随着人类活动干扰压力的减弱和湿地水文条件的恢复,自然植被也逐渐恢复,土壤理化性质朝原始湿地方向改善,促使土壤微生物量升高,但总体仍未达到原始湿地状况  相似文献   

13.
The Model of Humus Balance was used to estimate the influence of climate effects and changing agricultural practices on carbon (C) levels in soddy–podzolic soils in the Russian Federation for the years 2000–2050. The model was linked with a spatial database containing soil, climate and farming management layers for identification of spatial change of C sequestration potential. Analysis of relationships between C, soil texture and climate indicated that compared with a business-as-usual scenario, adaptation measures could increase the number of polygons storing soil organic carbon (SOC) by 2010–2020. The rate of possible C loss is sensitive to the different climate scenarios, with a maximum potential for SOC accumulation expected in 2030–2040, thereafter decreasing to 2050. The effect is most pronounced for the arid part of the study area under the emission scenario with the highest rate of increase in atmospheric CO2 concentration, supporting findings from the dynamic SOC model, RothC. C sequestration during the study period was permanent for clay and clay loam soils with a C content of more than 2%, suggesting that C sequestration should be focused on highly fertile, fine-textured soils. We also show that spatial heterogeneity of soil texture can be a source of uncertainty for estimates of SOC dynamics at the regional scale. Figures in color are available at  相似文献   

14.
为探究水电站扰动区人工植被恢复后土壤质量及肥力的变化,以向家坝植被混凝土、厚层基材和框格梁3种典型边坡下优势物种荩草根际与非根际土壤为研究对象,对土壤的养分和微生物生态化学计量比进行研究。结果表明:(1)植被混凝土、厚层基材样地的养分平均含量均显著高于框格梁样地;植被混凝土、框格梁样地下土壤养分含量在根际存在一定的富集,以有机碳的富集作用最为明显,而厚层基材样地则表现为土壤全量养分在根际土壤中存在亏缺;(2)植被混凝土和框格梁修复模式样地的土壤微生物量为根际土壤较高,MBC/MBN、MBC/MBP表现为非根际土壤较高,3种样地下根际与非根际土壤微生物生态化学计量比差异性显著(P<0.05);(3)相关性分析表明,土壤微生物碳、微生物氮、有机碳和全氮之间具有显著的正相关性(P<0.01),微生物量磷与土壤有机碳和全磷具有极显著的正相关性(P<0.01)。综合评价十数年后向家坝水电站工程扰动区人工修复土壤技术,植被混凝土和厚层基材修复措施对该区土壤全量养分含量的累积作用较好,框格梁样地的植物生长发育受到磷素营养的限制较大。  相似文献   

15.
Novel approach to monitoring of the soil biological quality   总被引:13,自引:0,他引:13  
In this study, a new approach to interpretation of results of the simple microbial biomass and respiration measurements in the soil microbiology is proposed. The principle is based on eight basal and derived microbial parameters, which are standardized and then plotted into sunray plots. The output is visual presentation of one plot for each soil, which makes possible the relative comparison and evaluation of soils in the monitored set. Problems of soil microbiology, such as the lack of benchmarking and reference values, can be avoided by using the proposed method. We found that eight parameters provide enough information for evaluation of the status of the soil microorganisms and, thus, for evaluation of the soil biological quality. The usage of rare parameters (potential respiration PR, ratio of potential and basal respiration PR/BR, biomass-specific potential respiration PR/C(bio), available organic carbon C(ext), and biomass-specific available organic carbon C(ext)/C(bio)) can be recommended, besides classical and well-known parameters (microbial biomass C(bio), basal respiration BR, metabolic coefficient qCO(2)). The combination of basal parameters and derived coefficients can also extend our knowledge about the condition of the soil microorganisms. In monitoring the case studies presented, we observed that soils evaluated to possess good biological quality displayed generally higher values of organic carbon, total nitrogen, clay, and cation exchange capacity. The soils of good biological quality can display higher levels of contaminants. This is probably related with the higher content of organic carbon and clay in these soils.  相似文献   

16.
Retention of estrogenic steroid hormones by selected New Zealand soils   总被引:1,自引:0,他引:1  
We performed batch sorption experiments for 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) on selected soils collected from dairy farming regions of New Zealand. Isotherms were constructed by measuring the liquid phase concentration and extracting the solid phase with dichloromethane, followed by an exchange step, and analysis by HPLC and UV detection. The corresponding metabolite estrone, (E1) formed during equilibration of E2 with soil was taken into account to estimate the total percentage recoveries for the compounds, which ranged from 47-105% (E2 and E1) and 83-102% (EE2). Measured isotherms were linear, although some deviation from linearity was observed in a few soils, which was attributed to the finer textured particles and/or the allophanic nature of the soils having high surface area. There was a marked difference in K(d)(eff) (effective distribution coefficient) values for E2 and EE2 among the soils, consistent with the soils organic carbon content and ranged from 14-170 L kg(-1) (E2), and 12-40 L kg(-1) (EE2) in the soils common for both compounds. The sorption affinity of hormones in the soils followed an order: EE2相似文献   

17.
This paper aims to give an overview of the effect of organic matter on soil-radiocaesium interaction and its implications on soil-to-plant transfer. Studies carried out after the Chernobyl accident have shown that high 137CS soil-to-plant transfer persists in organic soils over years. In most of these soils, the specific sites in clays control radiocaesium adsorption, organic compounds having an indirect effect. Only in organic soils with more than 95% of organic matter content and negligible clay content does adsorption occur mostly on non-specific sites. After a contamination event, two main factors account for the high transfer: the low solid-liquid distribution coefficient, which is due to the low clay content and high NH4+ concentration in the soil solution, and the low K+ availability, which enhances root uptake. The estimation of the reversibly adsorbed fraction, by means of desorption protocols, agrees with the former conclusions, since it cannot be correlated with the organic matter content and shows the lack of specificity of the adsorption in the organic phase. Moreover, the time-dependent pattern of the exchangeable fraction is related to soil-plant transfer dynamics.  相似文献   

18.
Effect of pH on the sorption of uranium in soils   总被引:5,自引:0,他引:5  
This work was undertaken to study the influence of soil type and chemical composition on uranium sorption ratios (SR in 1 kg-1) in order to reduce the uncertainty associated with this parameter in risk assessment models. Thirteen soil samples were collected from three different locations in France under different geological conditions. Clay content varied from 7.0 to 50.0%, pH ranged from 5.5 to 8.8 and organic matter content from 1.0 to 4.6%. Soils were incubated at room temperature in polyethylene packets for 28 days in the presence of 1 mg U kg-1 soil. Sorption ratio values varied from 0.9 to 3198 for all soils with no significant effect of soil texture or of organic matter. However, soil pH was highly linearly correlated with (log SR) as a probable consequence of the existence of different uranium complexes as a function of soil pH. The sorption behaviour differences between UO2(2+) and UO2(2+)-carbonate complexes are so great that any other effect of soil properties on U sorption is hidden. Thus, soil pH should be the focus variable for reduction of the uncertainty associated with the soil Kd value used in environmental risk assessments, even for reducing the uncertainty in site-specific Kd values.  相似文献   

19.
The Chernobyl nuclear accident in 1986 not only caused serious ecological problems in both the Ukraine and Belarus, which continue to the present day, but also contaminated a large part of the higher latitudes of the northern hemisphere. In this paper an overview is given of the latter problems in upland UK, where ecological problems still remain some 17 years after initial contamination. Following deposition of radiocaesium and radioiodine in May 1986, measurements of radioactivity in grass and soil indicated a rapidly declining problem as the radioiodine decayed and the radiocaesium became immobilised by attachment to clay particles. However, these studies, as well as the advice received by the Ministry of Agriculture, Fisheries and Food, were based on lowland agricultural soils, with high clay and low organic matter contents. The behaviour of radiocaesium in upland UK turned out to be dominated by high and persistent levels of mobility and bioavailability. This resulted in the free passage of radiocaesium through the food chain and into sheep. Consequently the Ministry banned the sale and movement of sheep over large areas of upland Britain, with bans remaining on some farms to the present day. Present day predictions suggest that these bans will continue in some cases for some years to come. The causes of radiocaesium mobility in upland areas have subsequently been the subject of intense investigation centred around vegetation and, in particular, soil characteristics. Soil types were identified which were particularly vulnerable in this respect and, where these coincided with high levels of deposition, sheep bans tended to be imposed. While much of the earlier work suggested that a low clay content was the main reason for continuing mobility, a very high organic matter content is now also believed to play a major role, this being a characteristic of wet and acidic upland UK soils. The overall message from this affair is the importance of a fundamental understanding of biogeochemical pathways in different ecosystems when attempting to predict the impacts of large-scale contamination.  相似文献   

20.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号