首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Greenhouse gas intensity is a ratio comparing the greenhouse gas (GHG) emissions of an activity or economic sector to the economic value it generates. In recent years, many countries have calculated the GHG intensity of their economic sectors as a basis for policy making. The GHG intensity of tourism, however, has not been determined since tourism is not measured as an economic sector in the national accounts. While for tourism-reliant countries it would be useful to know this quantity, a number of difficulties exist in its determination. In this study, we determine the GHG intensity of tourism's value added in Switzerland by means of a detailed bottom-up approach with the main methodological focus on how to achieve consistent system boundaries. For comparison, we calculate the tourism sector's GHG intensity for selected European countries using a simpler top-down approach. Our results show that the Swiss tourism sector is more than four times more GHG intensive than the Swiss economy on average. Of all tourism's sub-sectors, air transport stands out as the sector with by far largest emissions (80%) and highest GHG intensity. The results for other countries make similar, if not as pronounced, patterns apparent. We discuss the results and possible mitigation options against the background of the goal to prevent dangerous climate change.  相似文献   

2.
The need for and the benefits of a more sustainable approach to business management have been widely discussed in the literature. Many organizations have engaged in environmental management initiatives to improve their environmental performance and have found other benefits to the process, such as financial savings and reduced risk of liability. However, many constraints can inhibit the transformation to an environmentally conscious and responsible organization. These constraints include issues related to organizational culture and change management. To overcome these constraints and succeed in implementing a successful environmental management initiative, the literature suggests the importance for members of the organization of understanding the environmental impacts and policies of the organization through participation in environmental awareness training efforts that produces enduring knowledge and commitment. Armed with this knowledge, employees can then understand how the environment can affect and be affected by their duties and decisions. Various companies have used different approaches to environmental management training. It is important that organizations evaluate the efficiency of their training investment to ensure that the benefits will be generated. A case study of two electricity companies is used to illustrate the importance of evaluating environmental awareness efforts. The results of the study suggest that the training performed did not sufficiently increase employee environmental awareness of the company's environmental impacts despite a considerable time and financial investment in a one-time environmental awareness training program. Results are briefly discussed and recommendations are made to improve the results of the training investment.  相似文献   

3.
Climate change caused by excessive emission of greenhouse gases (GHGs) into the atmosphere has gained serious attention from the global community for a long time. More and more countries have decided to propose their goals such as Paris agreements, to reduce emitting these heat trapping compounds for sustainability. The Asian region houses dramatic changes with diverse religions and cultures, large populations as well as a rapidly changing socio-economic situations all of which are contributing to generating a mammoth amount of GHGs; hence, they require calls for related studies on climate change strategies. After pre-filtering of GHG emission information, 24 Asian countries have been selected as primary target countries. Hierarchical cluster analysis method using complete linkage technique was successfully applied for appropriate grouping. Six groups were categorized through GHG emission properties with major and minor emission sectors based on the GHG inventory covering energy, industrial processes, agriculture, waste, land use change, and forestry and bunker fuels. Assigning six groups using cluster analysis finally implied that the approach to establish GHG emission boundaries was meaningful to develop further mitigation strategies. Following the outcome of this study, calculating amount of reduction potential in suitable sectors as well as determining best practice, technology, and regulatory framework can be improved by policy makers, environmental scientists, and planners at the different levels. Therefore, this work on reviewing a wide range of GHG emission history and establishing boundaries of emission characteristics would provide further direction of effective climate change mitigation for sustainability and resilience in Asia.  相似文献   

4.
垃圾热化学转化利用过程中碳排放的两种计算方法   总被引:4,自引:1,他引:3  
为了明确城市生活垃圾焚烧和热解两种热化学方式处理过程中温室气体的排放量(简称"碳排放"或GHG),分别采用生命周期评价方法(LCA)和政府间气候变化专门委员会(IPCC)制定的2006国家温室气体排放清单指南(简称"IPCC2006指南")进行了核算,并计算了两种垃圾热化学处理方式相对于填埋处理的GHG减排量.结果表明,两种核算方法计算所得的不同垃圾处理方式的碳排放趋势基本一致,但基于IPCC2006指南计算出的GHG减排量高于LCA方法的计算结果.相对填埋处理而言,焚烧处理的GHG减排量从LCA法的597~660kg(以CO2当量计,下同)提高到IPCC2006指南法的648~747kg;垃圾热解发电的GHG减排量从LCA法的535kg提高到IPCC2006指南法的589kg.同时,对这两种核算方法的特点及在我国的适用性进行了分析,研究认为LCA法和IPCC2006指南可以结合使用以促进我国GHG核算机制的完善.  相似文献   

5.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

6.
An increased use of wood products and an adequate management of forests can help to mitigate climate change. However, planning horizons and response time to changes in forest management are usually long and the respective GHG effects related to the use of wood depend on the availability of harvested wood. Therefore, an integral long-term strategic approach is required to formulate the most effective forest and wood management strategies for mitigating climate change.The greenhouse gas (GHG) dynamics related to the production, use and disposal of wood products are manifold and show a complex time pattern. On the one hand, wood products can be considered as a carbon pool, as is the forest itself. On the other hand, an increased use of wood can lead to the substitution of usually more energy-intense materials and to the substitution of fossil fuels when the thermal energy of wood is recovered. Country-specific import/export flows of wood products and their alternative products as well as their processing stage have to be considered if substitution effects are assessed on a national basis.We present an integral model-based approach to evaluate the GHG impacts of various forest management and wood use scenarios. Our approach allows us to analyse the complex temporal and spatial patterns of GHG emissions and removals including trade-offs of different forest management and wood use strategies. This study shows that the contributions of the forestry and timber sector to mitigate climate change can be optimized with the following key recommendations: (1) the maximum possible, sustainable increment should be generated in the forest, taking into account biodiversity conservation as well as the long-term preservation of soil quality and growth performance; (2) this increment should be harvested continuously; (3) the harvested wood should be processed in accordance with the principle of cascade use, i.e. first be used as a material as long as possible, preferably in structural components; (4) waste wood that is not suitable for further use should be used to generate energy. Political strategies to solely increase the use of wood as a biofuel cannot be considered efficient from a climate perspective; (5) forest management strategies to enhance carbon sinks in forests via reduced harvesting are not only ineffective because of a compensatory increase in fossil fuel consumption for the production of non-wooden products and thermal energy but also because of the Kyoto-“cap” that limits the accountability of GHG removals by sinks under Article 3.3 and 3.4, at least for the first commitment period; (6) the effect of substitution through the material and energy use of wood is more significant and sustained as compared with the stock effects in wood products, which tend towards new steady-state flow equilibria with no further increase of C stocks; (7) from a global perspective, the effect of material substitution exceeds that of energy recovery from wood. In the Swiss context, however, the energy recovery from wood generates a greater substitution effect than material substitution.  相似文献   

7.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

8.
Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the United States and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, we review the issues involved in MERV activities. We identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency and the persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (6) reporting by multiple project participants; (7) verification of GHG reduction credits; (8) uncertainty and risk; (9) institutional capacity in conducting MERV; and (10) the cost of MERV.  相似文献   

9.
Management of peat soils is regionally important as they cover large land areas and have important but conflicting ecosystems services. A recent management trend for drained peatlands is the control of greenhouse gases (GHG) by changes in agricultural practices, peatland restoration or paludiculture. Due to complex antagonistic controls of moisture, water table management can be difficult to use as a method for controlling GHG emissions. Past studies show that there is no obvious relationship between GHG emission rates and crop type, tillage intensity or fertilization rates. For drained peat soils, the best use options can vary from rewetting with reduced emission to efficient short term use to maximize the profit per amount of greenhouse gas emitted. The GHG accounting should consider the entire life cycle of the peatland and the socio-economic benefits peatlands provide locally. Cultivating energy crops is a viable option especially for wet peat soils with poor drainage, but harvesting remains a challenge due to tractability of wet soils. Paludiculture in lowland floodplains can be a tool to mitigate regional flooding allowing water to be stored on these lands without much harm to crops. This can also increase regional biodiversity providing important habitats for birds and moisture tolerant plant species. However, on many peatlands rewetting is not possible due to their position in the landscape and the associated difficulty to maintain a high stable water table. While the goal of rewetting often is to encourage the return of peat forming plants and the ecosystem services they provide such as carbon sequestration, it is not well known if these plants will grow on peat soils that have been altered by the process of drainage and management. Therefore, it is important to consider peat quality and hydrology when choosing management options. Mapping of sites is recommended as a management tool to guide actions. The environmental status and socio-economic importance of the sites should be assessed both for continued cultivation but also for other ecosystem services such as restoration and hydrological functions (flood control). Farmers need advice, tools and training to find the best after-use option. Biofuels might provide a cost-efficient after use option for some sites. Peat extraction followed by rewetting might provide a sustainable option as rewetting is often easier if the peat is removed, starting the peat accumulation from scratch. Also this provides a way to finance the after-use. As impacts of land use are uncertain, new policies should consider multiple benefits and decisions should be based on scientific evidence and field scale observations. The need to further understand the key processes and long term effects of field scale land use manipulations is evident. The recommended actions for peatlands should be based on local condition and socio-economic needs to outline intermediate and long term plans.  相似文献   

10.
Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.  相似文献   

11.
Increasing energy consumption in the transportation sector results in challenging greenhouse gas (GHG) emissions and environmental problems. This paper involved integrated assessments on GHG emissions and emergy of the life cycle for the internal combustion engine (ICE) and electric automobiles in the USA over the entire assumed fifteen-year lifetime. The hotspots of GHG emissions as well as emergy indices for the major processes of automobile life cycle within the defined system boundaries have been investigated. The potential strategies for reducing GHG emissions and emergy in the life cycle of both ICE and electric automobiles were further proposed. Based on the current results, the total GHG emissions from the life cycle of ICE automobiles are 4.48E + 07 kg CO2-e which is 320 times higher than that of the electric automobiles. The hotspot area of the GHG emissions from ICE and electric automobiles are operation phase and manufacturing process, respectively. Interesting results were observed that comparable total emergy of the ICE automobiles and electric automobiles have been calculated which were 1.54E + 17 and 2.20E + 17 sej, respectively. Analysis on emergy index evidenced a better environmental sustainability of electric automobiles than ICE automobiles over the life cycle due to its higher ESI. To the authors’ knowledge, it is the first time to integrate the analysis of GHG emissions together with emergy in industrial area of automobile engineering. It is expected that the integration of emergy and GHG emissions analysis may provide a comprehensive perspective on eco-industrial sustainability of automobile engineering.  相似文献   

12.
Concerns about climate change as a result of anthropic actions have led to an increase in the volume of information disclosed about it in the reports of companies that are members of the Carbon Disclosure Project (CDP). In this context, the factors most disclosed remain obscure due to both the complexity of climate change impacts and the stakeholders’ different interests. This study aims to identify which factors are most disclosed in the reports of companies that are members of CDP. For this purpose, it is necessary to investigate if the factors indicated by managers and experts are the main ones disclosed in the reports of Brazilian companies that are members of CDP, as well as to identify which companies stand out in climate change disclosure based on these factors. To this end, 463 reports submitted by 48 companies between 2014 and 2016 were examined and 32 factors were investigated using the NVivo® software. Some companies submitted reports with unified titles, which reduced the sample. The results indicate that certain factors—prevention of pollution, prevention of loss, management of environmental assets, volume of greenhouse gas (GHG) emissions, and climate change strategy—account for 50.03% of the total volume of information disclosed about climate change. The main lesson learned from this research is that climate change mitigation strategy is strongly supported by the evidence of corporate annual reports, and it has relation with the following determinant factors: pollution prevention, loss prevention, environmental asset management, GHG emissions, and the strategy chosen by the companies to deal with climate change. Due to the low volume of research related to loss prevention and pollution prevention, we have identified that little attention has been paid to these items. Based on our results, we recommend that climate change mitigation strategies begin to consider these determinant factors in their structure because both have a strong influence in demonstrating how companies are managing these factors for stakeholders. Therefore, companies can benefit from this data to manage their resources for the maintenance of the social contract (legitimacy) through the factors most disclosed, especially companies with lower scores on the scale of ranking presented. Hence, stakeholders can have access to more information on strategies that mitigate climate change and help companies improve the disclosure of the actions that contribute to reduction of GHG emissions.  相似文献   

13.

The development of high-resolution greenhouse gas (GHG) inventories is an important step towards emission reduction in different sectors. However, most of the spatially explicit approaches that have been developed to date produce outputs at a coarse resolution or do not disaggregate the data by sector. In this study, we present a methodology for assessing GHG emissions from the residential sector by settlements at a fine spatial resolution. In many countries, statistical data about fossil fuel consumption is only available at the regional or country levels. For this reason, we assess energy demand for cooking and water and space heating for each settlement, which we use as a proxy to disaggregate regional fossil fuel consumption data. As energy demand for space heating depends heavily on climatic conditions, we use the heating degree day method to account for this phenomenon. We also take the availability of energy sources and differences in consumption patterns between urban and rural areas into account. Based on the disaggregated data, we assess GHG emissions at the settlement level using country and regional specific coefficients for Poland and Ukraine, two neighboring countries with different energy usage patterns. In addition, we estimate uncertainties in the results using a Monte Carlo method, which takes uncertainties in the statistical data, calorific values, and emission factors into account. We use detailed data on natural gas consumption in Poland and biomass consumption for several regions in Ukraine to validate our approach. We also compare our results to data from the EDGAR (Emissions Database for Global Atmospheric Research), which shows high agreement in places but also demonstrates the advantage of a higher resolution GHG inventory. Overall, the results show that the approach developed here is universal and can be applied to other countries using their statistical information.

  相似文献   

14.
北京市生活垃圾处理的温室气体排放变化分析   总被引:4,自引:0,他引:4  
文章从城市垃圾处理与节能减排之间关系的角度,分析研究了北京市2001~2007年生活垃圾卫生填埋、堆肥和焚烧发展过程中直接和间接的温室气体排放量变化,结果表明,随着生活垃圾产生量的增加和物理组成的变化,北京市生活垃圾处理引起的温室气体排放急剧增多,总排放量从2001年约363万tCO2当量增加到2007年1157万t左右。目前卫生填埋、堆肥和焚烧三种方法每处理1t垃圾的单位排放量分别为2.1t、0.4t和2.0tCO2当量。虽然堆肥具有相对低的单位排放量,但由于市场等方面的原因,堆肥在北京生活垃圾处理中的比重并不大,2007年处理的垃圾量不到无害化总处理量的7%。2007年填埋产生CH4总量约48万t,若50%回收利用,其发热量相当于约40万t管道煤气,具有很大的节能减排潜力。焚烧垃圾进行供热或发电的技术在国内外正蓬勃发展,也是节能减排的有效途径。而加强垃圾回收与分类是从源头减少垃圾,实现节能减排的最好方法。  相似文献   

15.
Research shows that livestock account for a significant proportion of greenhouse gas (GHG) emissions and global consumption of livestock products is growing rapidly. This paper reviews the life cycle analysis (LCA) approach to quantifying these emissions and argues that, given the dynamic complexity of our food system, it offers a limited understanding of livestock's GHG impacts. It is argued that LCA's conclusions need rather to be considered within a broader conceptual framework that incorporates three key additional perspectives. The first is an understanding of the indirect second order effects of livestock production on land use change and associated CO2 emissions. The second compares the opportunity cost of using land and resources to rear animals with their use for other food or non-food purposes. The third perspective is need—the paper considers how far people need livestock products at all. These perspectives are used as lenses through which to explore both the impacts of livestock production and the mitigation approaches that are being proposed. The discussion is then broadened to consider whether it is possible to substantially reduce livestock emissions through technological measures alone, or whether reductions in livestock consumption will additionally be required. The paper argues for policy strategies that explicitly combine GHG mitigation with measures to improve food security and concludes with suggestions for further research.  相似文献   

16.
城市生活垃圾处理全过程的低碳模式优化研究   总被引:7,自引:0,他引:7  
生活垃圾处理过程中的温室气体排放是重要的人为碳排放源.本文提出一种基于城市生活垃圾处理全过程的低碳模式制定方法,通过对不同垃圾末端处理工艺的资源与能源消耗,温室气体排放潜值与资源化率的评价,进行处理情景设计与分析,识别出生活垃圾处理低碳发展的调控措施,并结合约束条件下的定量优化,得到生活垃圾低碳优化处理模式.最后,以北京市为案例点,针对主要调控因子设计不同无害化处理比例的3种情景并开展以上3方面评价.结果表明,垃圾低碳优化处理的措施为降低填埋比例,同时提高堆肥和焚烧比例;垃圾低碳优化处理模式为填埋、焚烧与堆肥的利用比例是23%:25%:52%.  相似文献   

17.
建立完善的、减污降碳相协同的管理制度是支撑全国碳排放高质量达峰的重要保障,有效控制新增碳排放是推动实现重点行业尽早达峰的关键. 环境影响评价是我国源头防控的基础性制度,将温室气体管控要求纳入其中是现阶段推动减污降碳协同增效的可行途径及重要抓手. 综合考虑国内外管理实践经验以及我国制度特点与管理需求,开展了温室气体环境影响评价技术方法研究. 本文提出了系统性、全过程、协同性的三大温室气体评价基本原则,识别建设项目温室气体环境影响评价的主要影响因素,构建了强调高效、低碳、循环的温室气体环境影响评价指标体系,建立了包含项目分析与判断、影响因素识别、影响预测与技术分析、综合环境影响评价的评价方法体系. 基于该方法,以山东省250万吨电解铝产能转移至云南省项目为例,开展碳排放环境影响评价分析,测算结果表明:若不考虑项目对云南省对外输电的影响,全国CO2减排量可达2 574.4×104 t;如考虑项目对跨区输电的影响,则全国CO2净减排量将减至968.3×104 t;进一步考虑技术升级、地方煤炭消费政策等因素影响,还会得到差异明显的评价结果. 研究显示,考虑不同评价目标、评价边界和影响因素可能会对全社会碳排放量环境影响评价结果产生显著影响,由此建议在开展相关评价时应立足实际需求,合理确定评价目标和边界.   相似文献   

18.
“湖泊-流域”土地生态管理的理念与方法探讨   总被引:1,自引:0,他引:1  
在对湖泊-流域基本概念及其管理问题综合阐述、对土地生态管理及其理念应用分析的基础上,探讨土地生态管理对"湖泊-流域"管理的启示。从协调人与自然、不同利益者之间的冲突出发,结合"人-地-水"协调关系问题的处理、"点-线-面"生态网络体系的建设、"生态-经济-社会"可持续发展等,对湖泊-流域土地生态管理的理念进行了具体分析。并提出了湖泊-流域土地生态管理的4个基本目标:①生态系统可持续;②土地利用可持续;③生态经济可持续;④流域管理可持续。在上述分析的基础上,探讨了湖泊-流域土地生态管理基本要素、主要内容、系统框架、管理模型和机制等,分析土地利用/覆盖变化、生态环境变化的直接驱动力和间接驱动力,在生态环境、资源利用、社会经济等评价的基础上,以生态文明建设、直接和间接优化调控机制为核心,提出了湖泊-流域土地生态管理的主要步骤和基本方法,并讨论了湖泊-流域土地生态管理的特点和发展趋势。  相似文献   

19.
温室气体减排项目评价方法研究   总被引:8,自引:0,他引:8  
阐述了温室气体减排技术选择的准则与优先领域,以及温室气体减排项目评价应包括的主要内容;对3类主要的温室气体减排项目——节能技术改造项目、新建提高能源转换或利用效率项目及能源替代项目,分别探讨了基准线的确定方法、减排量和增量减排成本的计算方法在这3个项目评价中的难点;介绍了温室气体间接减排项目评价方法;最后以张北风电场二期风电项目为例对全球环境效益进行评价。   相似文献   

20.
Greenhouse gas (GHG) data submitted in April 2014 on land use, land use change and forestry (LULUCF), energy, industrial processes, solvents and other product use, agriculture, and waste for 37 developed countries was analyzed to estimate the relative contributions of different sectors to GHG emission reductions. This GHG data from the first commitment period of the Kyoto Protocol included 35 parties to Annex B of the Kyoto Protocol, the United States and Canada. Results show that the contribution of each sector was, in order: energy (36.9%), industrial processes (12.4%), agriculture (9.9%), LULUCF (7.7%), waste (3.4%), and solvents and other product use (0.1%). The average proportion of base year emissions reduced in each sector by countries in Annex B was, in order: energy (7.4%), agriculture (2.7%), LULUCF (1.9%), industrial processes (1.2%), waste (0.5%), and solvents and other product use (0.1%). Overall, the energy sector contributed the highest GHG emission reductions, while the agriculture and LULUCF sectors also made contributions. Most countries achieved limited absolute GHG reductions from their chosen LULUCF activities, but the relative contribution of GHG emission reductions from LULUCF was significant but small. This suggests that, unless there are substantial changes to accounting rules, future emission reductions will mainly result from mitigation actions targeting fossil fuel consumption, while the agriculture and LULUCF sectors will continue to play auxiliary roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号