首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 150 毫秒
1.
杨玉兵  杨庆  李洋  周薛扬  李健敏  刘秀红 《环境科学》2018,39(11):5051-5057
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生.  相似文献   

2.
利用体积为3 L的SBR反应器,以NO~-_3为电子受体,乙醇为电子供体,控制初始COD/N=5.0,考察不同盐度条件下反硝化过程NO~-_2和N_2O积累及还原过程,并对N_2O还原过程进行Monod方程拟合。结果表明:盐度增加导致系统还原速率降低。NaCl盐度由0增至20 g/L时,NO~-_3、NO~-_2和N_2O的还原速率分别由17.67,14.15,139.33 mg/(g·h)降至6.57,7.41,33.17 mg/(g·h)。N_2O还原半饱和常数随盐度的增加而增加,低盐度下氧化亚氮还原酶与底物的结合能力较强,表现出高的还原速率。反硝化初始阶段,N_2OR(N_2O还原酶)的合成速率小于NaR(NO~-_3还原酶)和NiR(NO~-_2还原酶)合成速率,导致N_2O积累。高盐度对N_2O还原的抑制远大于其对NO~-_3和NO~-_2还原活性的抑制,是导致高盐度下反硝化过程N_2O积累的主要原因。  相似文献   

3.
实验采用SBR工艺,在限氧曝气条件下,研究自养亚硝化(进水中不含有机碳)过程中N_2O的释放特征。结果表明,在限氧自养亚硝化过程中,不同进水氨氮浓度条件下的溶解氧浓度均为(0.08±0.02)mg/L,氨氧化速率基本不受氨氮浓度变化的影响,即自养亚硝化反应呈零级反应。进水氨氮浓度为60,120,240 mg/L时的N_2O释放总量分别为3.24,8.75,24.59 mg/L,相应的N_2O释放因子依次为0.12、0.17和0.22。限氧曝气条件下,氨氧化菌(AOB)反硝化产生N_2O占主导作用。进水氨氮浓度越高时,亚硝化过程需时越长,后期NO-2-N累积量越大,导致AOB反硝化产生N_2O的速率越大,N_2O释放总量和释放因子(N_2O释放量/NH+4-N去除量)也越大。  相似文献   

4.
污水生物反硝化脱氮过程是一氧化二氮(N2O)的重要释放源之一.试验采用序批式反应器以甲醇为碳源(电子供体),硝酸盐(NO3--N)为电子受体驯化反硝化菌,并采用批处理试验研究不同电子受体、不同碳氮(C/N)比和不同初始亚硝酸盐(NO2--N)质量浓度条件下N2O释放情况.在典型周期试验和批处理试验中均能检测到N2O的释放.以NO2--N为电子受体时会释放较多的N2O,而以NO3--N为电子受体时释放的N2O相对较少.不同C/N比通过影响反硝化菌的活性进而影响N2O的释放,反硝化菌的活性和N2O的释放量均随着C/N比的降低而降低.N2O的释放量随着初始NO2--N质量浓度的增加而增加,一定浓度范围内的NO2--N会增强反硝化菌的活性.初始NO2--N质量浓度与N2O的释放量具有较好的指数相关性.  相似文献   

5.
张静蓉  王淑莹  尚会来  彭永臻 《环境科学》2009,30(12):3624-3629
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3.  相似文献   

6.
由于含氮废水的大量排放,水体富营养化日趋严重,如何高效去除废水中的氮素仍是亟待解决的问题.针对传统生物脱氮工艺流程复杂、能耗高、抗冲击能力弱以及释放温室气体N_2O等缺陷,本文基于高效异养硝化细菌Pseudomonas aeruginosa YL,通过探讨其生理生化特征、异养硝化-好氧反硝化脱氮过程和N_2O产生特性,进一步解析异养硝化脱氮理论.结果表明,菌株YL具有高效的异养硝化和好氧反硝化能力,24 h培养期100 mg·L~(-1)的NH_4~+-N、NO_2--N和NO_3~--N能够完全去除;异养硝化过程几乎无中间产物生成,但以NO_3~--N作为氮源时,NO_2--N累积量高达25. 55 mg·L~(-1).同时,反硝化功能基因nap A、nir K和nos Z基因的成功表达,进一步证实菌株YL具有好氧反硝化能力.菌株YL异养硝化-好氧反硝化过程气态氮产物约占去除TN的30%~40%,脱氮产物主要为N2,当NH_4~+-N、NO_2--N和NO_3~--N分别为唯一氮源时,N2生成量分别为3. 46、3. 49和3. 36 mg.相比较,菌株YL脱氮过程仅生成微量的中间产物N_2O,以NH_4~+-N为唯一氮源时的最终生成总量为6. 63μg,低于以NO_2--N和NO_3~--N为唯一氮源时N_2O的生成量.此外,高C/N、低pH、高温以及高NH_4~+-N和NO_2--N环境均会导致N_2O的大量生成,但大多数环境因素对菌株YL的N_2O生成量影响较小,且其最高生成量显著低于短程硝化系统和自养硝化系统.以上研究结果表明菌株YL具有优异的脱氮、N_2O控逸和环境耐受能力,可有效避免水处理过程对大气的二次污染.  相似文献   

7.
为探究乙酸钠作为碳源时,不同污泥源外源短程反硝化过程中亚硝酸盐积累特性,采用1号和2号SBR分别接种某污水处理厂二沉池和同步硝化反硝化除磷系统剩余污泥,通过合理控制初始硝酸盐浓度和缺氧时间,实现了短程反硝化的启动,并考察了其在不同初始COD和NO_3~--N浓度条件下的碳、氮去除特性.试验结果表明:以乙酸钠为碳源,1号和2号SBR可分别在21 d和20 d实现短程反硝化的成功启动,且其NO_2~--N积累量和亚硝酸盐积累率(NAR)均维持在较高水平,分别为12. 61 mg·L-1、79. 76%和13. 85 mg·L-1、87. 60%.当2号SBR初始NO_3~--N浓度为20 mg·L-1,且初始COD浓度由60mg·L-1升高至140 mg·L-1时,系统实现最高NO_2~--N积累时间可由160 min逐渐缩短至6 min,同时NO_3~--N比反硝化速率(以VSS计)由3. 84 mg·(g·h)-1增加至7. 35 mg·(g·h)-1,初始COD浓度的提高有利于实现短程反硝化过程NO_2~--N积累. 2号SBR初始COD浓度为100 mg·L-1,当初始NO_3~--N浓度由20 mg·L-1增加至30 mg·L-1时,系统NAR均维持在90%以上,最高可达100%(NO_3~--N初始浓度为25 mg·L-1);当初始NO_3~--N浓度≥35 mg·L-1时,系统COD不足导致NO_3~--N不能被完全还原为NO_2~--N.此外,在不同初始COD浓度(80、100、120 mg·L-1)和NO_3~--N浓度(20、25、30、40 mg·L-1)条件下,2号SBR的脱氮除碳和短程反硝化性能均优于1号SBR.  相似文献   

8.
为了研究氨氮浓度对缺氧期以胞内贮存物为电子供体的亚硝酸盐反硝化氧化亚氮(N_2O)释放量的影响,采用稳定运行在厌氧/好氧/缺氧(A/O/A)模式下的序批式活性污泥反应器(SBR),定期将其运行方式改变为厌氧/缺氧(An/A)方式运行,利用微生物在厌氧期将低分子有机物转化为胞内贮存物的特点,在缺氧初期向反应器投加亚硝酸盐,实验研究4种不同氨氮浓度对缺氧反硝化过程N_2O产生量的影响。反硝化实验中反应器初期COD(葡萄糖)浓度为200 mg/L,氨氮浓度分别为0、40、60、80 mg/L,缺氧初期投加亚硝酸盐后反应器内亚硝态氮浓度为40 mg/L。实验结果表明随投加氨氮浓度升高,反硝化完成时间随之变长,N_2O释放量相应增大,其原因可能是游离氨对反硝化微生物活性产生了一定程度的抑制作用。随投加氨氮浓度的升高游离氨浓度相应增高,抑制作用增强。同时发现当NO_2~--N浓度接近0时,基于胞内贮存物的N_2O还原反应才得以发生,说明亚硝酸盐对N_2O的还原有抑制作用,且抑制浓度很低。  相似文献   

9.
试验采用序批式反应器(SBR)处理高氨氮废水,逐步提高废水氨氮(NH+4-N)浓度到800 mg·L-1,通过控制曝气量实现了短程硝化.SBR周期试验表明,在低溶解氧和高游离氨等共同作用下,氨氧化菌(AOB)活性较低,导致AOB以亚硝酸盐氮(NO_2~--N)作为电子受体进行好氧反硝化,氧化亚氮(N_2O)释放因子为9.8%.静态试验控制初始NH_4~+-N为100 mg·L-1且改变曝气量(0.22~0.88 L·min~(-1))条件下,溶解氧浓度的增加能够提高硝化菌活性,N2O释放因子为0.51%~0.85%.当初始NH_4~+-N浓度为100 mg·L~(-1)且曝气量控制在0.66 L·min-1时,初始NO-2-N浓度为0~100 mg·L~(-1)对硝化菌活性影响较小,N2O释放因子为0.50%~0.71%.当溶解氧和游离氨浓度控制在适宜范围内,可维持AOB较高活性,抑制AOB发生好氧反硝化作用,降低N2O释放率.  相似文献   

10.
亚硝酸盐对外碳源反硝化过程N2O还原的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本试验通过批次试验考察了亚硝酸盐对外碳源反硝化过程N2O还原的影响.结果表明NO2--N初始浓度为5.92~35.23mg/L时,随着NO2--N浓度的增加,反硝化过程中N2O的积累量逐渐增加;当NO2--N浓度为35.23mg/L时,NO2--N还原量的46.26%被转化为N2O.通过对比试验得出,N2O还原酶与亚硝酸盐还原酶对电子的竞争和游离亚硝酸(FNA)对N2O还原酶的抑制会导致N2O比还原速率下降,造成反硝化过程N2O积累.基于上述试验结果提出,污水处理厂可通过调控运行条件控制NO2--N浓度,降低反硝化过程的N2O的产生与释放;也可以通过短程硝化提高NO2--N浓度,促进反硝化过程N2O的积累,再通过N2O氧化甲烷减少N2O排放,同时提高产能37%.  相似文献   

11.
以喹啉或吲哚为单一碳源时反硝化过程中亚硝酸盐的积累   总被引:4,自引:0,他引:4  
分别以喹啉或吲哚为单一碳源和电子供体,硝酸盐为电子受体,对反硝化过程中亚硝酸盐(NO2--N)的积累进行了试验研究.结果表明,以喹啉为碳源时,在不同碳氮比(C/N)条件下反硝化过程中均出现明显的NO2--N积累;而且其最高积累率随着C/N比增大而降低,当C/N比为2.5时,NO2--N最高积累率达93.97%,当C/N比为12.8时NO2--N最高积累率为42.31%.而以吲哚为碳源时,在不同C/N比条件下反硝化过程中NO2--N积累程度都很低,最高积累率只有4.71%.以喹啉为单一碳源时,亚硝酸盐的还原速率小于硝酸盐的还原速率;而以吲哚为单一碳源时,亚硝酸盐的还原速率大于硝酸盐的还原速率;上述硝酸盐与亚硝酸盐还原速率的不同导致了以喹啉或吲哚分别为碳源时反硝化过程中亚硝酸盐积累率的不同.基于碳源完全降解和完全反硝化的考虑,以喹啉或吲哚为单一碳源时的最佳碳氮比均为6.8.  相似文献   

12.
利用固相反硝化同时去除水中硝酸盐和4-氯酚   总被引:5,自引:1,他引:4  
王旭明  王建龙 《环境科学》2009,30(5):1420-1424
研究了固相反硝化技术同时去除水中硝酸盐和4-氯酚的可行性.结果表明,以可降解餐盒为碳源和微生物附着载体进行异养反硝化,能有效去除水中的硝酸盐.在批式实验条件下,当NO-3-N初始浓度为50 mg/L时,平均反硝化速率为24.0 mg/(L·h).当4-氯酚浓度低于30 mg/L时,对反硝化脱氮有促进作用;大于40 mg/L时,对反硝化有抑制作用.在反硝化条件下,当4-氯酚的初始浓度分别为5 mg/L和30 mg/L时,8 h后其去除率分别为90%和71%,4-氯酚的去除是由于可降解餐盒的吸附作用及附着微生物的降解作用.  相似文献   

13.
不同电子受体反硝化过程中C/N对N2O产量的影响   总被引:7,自引:3,他引:4  
试验采用SBR反应器,分别考察了不同C/N条件下,以硝酸盐和亚硝酸盐为电子受体的反硝化过程中N2O产生情况.投加乙醇作为反硝化碳源,以硝酸盐为电子受体时调节C/N分别为0、 1.2、 2.4、 3.5、 5.0和20,以亚硝酸盐为电子受体时调节C/N分别为0、 1.8、 2.4、 3.0、 4.3、 5.2、 6.6和20.6.结果发现,以亚硝酸盐为电子受体时,最佳C/N为3.0,此时N2O产生量为0.044 mg·L-1;以硝酸盐为电子受体时,最佳C/N为5.0,此时N2O产生量为0.135 mg·L-1,是以亚硝酸盐为电子受体时的3倍.电子受体类型不同时,N2O产生量的变化趋势类似:在碳源严重不足时,反硝化率和N2O产生量均很低;碳源相对不足时N2O产生量增加;C/N过大时,虽然反硝化速率很快,但N2O产量也急剧增大.可见,与全程硝化反硝化工艺相比,短程硝化反硝化工艺可节省40%碳源,且控制C/N=3,其反硝化过程产生的N2O远少于全程反硝化.  相似文献   

14.
筛选出1株耐盐异养硝化-好氧反硝化菌qy37,通过形态观察、生理生化试验和16S rDNA序列分析,确定其为假单胞菌属(Pseudomonas).研究了异养硝化-好氧反硝化菌qy37的脱氮特性.在以NH4Cl为氮源的异养硝化系统内,该菌32 h内使NH 4+-N由138.52 mg/L降至7.88 mg/L,COD由2 408.39 mg/L降至1 177.49 mg/L,NH2 OH最大积累量为9.42 mg/L,NO 2--N最大积累量仅为0.02 mg/L,推测该菌将NH2OH直接转化为N2O和N2从系统中脱除.在以NaNO2为氮源的好氧反硝化系统内,该菌24 h内使NO 2--N由109.25 mg/L降至2.59 mg/L,NH2OH最大积累量为3.28 mg/L.好氧反硝化系统与异养硝化系统相比菌体生长量高,TN去除率低,COD消耗量低,NH2OH积累量低,并且检测到NO 3--N的积累.认为好氧反硝化在菌体生长和能量利用方面比异养硝化更有效率.在异养硝化-好氧反硝化混合系统内,16 h NH 4+-N去除速率比异养硝化系统提高了37.31%.混合系统的NH2 OH积累量低于异养硝化系统和好氧反硝化系统,但N2 O产出量高于二者.  相似文献   

15.
取自强化A/O工艺处理合成氨废水中试装置的活性污泥,在pH、碳源和温度均不为限制性因素条件下,短程反硝化和全程反硝化均为零级反应.结果表明,相对于全程反硝化,短程反硝化可以节约14.1%的碳源和55.7%的反硝化时间;初始NO2--N为36.82 mg.L-1时反硝化最快,比反硝化速率(以NO2--N/VSS计)为0.509 g.(g.d)-1;pH为7.5时反硝化速率最快,实际运行中应避免缺氧区pH〉9;选择性增殖的反硝化菌对甲醇和乙醇形成了良好的适应性,却对葡萄糖和乙酸等其它低分子易降解有机物产生了不适应性.  相似文献   

16.
COD/N与pH值对短程硝化反硝化过程中N2O产生的影响   总被引:1,自引:0,他引:1  
利用SBR反应器,通过投加乙醇控制COD/N为0、1.5、3、4.5,调节pH值分别在6、7、8,反硝化初始投加NO2--N为30mg/L,考察了缺氧条件下COD/N与pH值对短程硝化反硝化过程中N2O产量的影响.结果表明:低COD/N可以造成N2O持续较高的逸出,N2O最大产生量为2.35mg/L;低pH值条件下增加了N2O的积累,pH值在6时的N2O积累量是pH在7、8时的800倍;高COD/N和高pH值下的N2O产生速率最小,而当pH=6,COD/N=0时,N2O产生速率最大,为2.35×10-3mgN/(mgMLSS?L?h).其原因是:N2O还原酶争夺电子的能力较弱,充足的电子供体有利于N2O的还原;低pH值可影响微生物的代谢,且在H+存在时产生的游离亚硝酸(HNO2)对N2O还原酶具有抑制作用.充足的碳源和碱性条件,是降低短程硝化反硝化过程中N2O产量的关键因素.  相似文献   

17.
在生物法反硝化脱氯的过程中,碳源的种类与浓度对反硝化的速率有重要影响。研究了不同碳源,如乙醇、乙酸钠、葡萄糖、苯酚以及天然碳源对固定化污泥反硝化性能影响。结果表明:乙酸钠为最适宜的碳源;最佳碳氮比为4:1:硝酸盐氮去除率可达99.7%,出水硝酸盐氮质量浓度小于5mg/L。反硝化过程为零级动力学,反应分为2个阶段,第一阶段的动力学方程为Y=-37.897x+127.75,第二阶段的动力学方程为Y=-13.458x+64.412。  相似文献   

18.
采用序批式活性污泥反应器(ASBR),通过调整进水C/N和S/N,在活性污泥体系中探究电子受体有限的条件下,不同电子供体(有机物或者S2-)对反硝化和硝酸盐氮异化还原成铵(DNRA)过程的影响.结果表明:较高的C/N进水条件,有利于反硝化过程的进行;而较高的S/N进水条件,更有利于DNRA过程的发生;DNRA过程的特征产物NH4+-N,在C/N/S=2:2:3、2:2:4条件下的出水中较明显,其中C/N/S=2:2:4条件下,NH4+-N浓度达到最高为10.65mg/L.说明在电子受体有限时,过量的电子供体可促使反硝化向DNRA过程转变.采用16SrRNA分子生物学技术对不同C/N/S下的微生物菌群结构进行分析,发现与氮还原相关的Proteobacteria、Anaerolineae、Bacteroidia、Actinobacteria等菌群丰度较高,且Actinobacteria菌与DNRA过程相关.不同电子供体环境下氮转移途径的研究可为污水处理过程中碳,氮,硫的同步去除提供指导.  相似文献   

19.
为探究低C/N[ρ(CODCr)/ρ(NO3--N),下同]水体的脱氮技术,分别以火山岩、火山岩/铁碳颗粒、火山岩/硫磺颗粒、火山岩/铁碳颗粒/硫磺颗粒作为填料构建R1、R2、R3和R4反应器,考察反硝化系统在不同C/N下的脱氮效果.结果表明:①随着进水C/N的降低,R1、R2和R3反应器的NO3--N去除率逐渐降低,R4反应器则是先升后降;在C/N为1.5~2.0、系统温度为30℃、进水pH为7.0±0.2、HRT(水力停留时间)为4.0 h、进水ρ(NO3--N)为30 mg/L时,R4反应器中NO3--N去除率最高,平均值为90.1%.②在R2反应器中,随着反应器的运行,铁碳颗粒自身氧化表面形成氧化膜,使得铁自养反硝化作用不断减弱,脱氮效率与R1反应器相近.③运行前期,R2和R4反应器保持着较高的ρ(NH4+-N),随着反应器的运行,4个反应器的ρ(NH4+-N)相当.④与R3反应器相比,R4反应器中不存在NO2--N的累积情况,同时铁自养过程产生的碱能被硫自养过程所消耗,系统pH更适合反硝化菌生存.研究显示,C/N为1.5~2.0时,异养-铁-硫自养反硝化系统可提供充足的电子供体,减少对有机碳源的依赖,保证了稳定高效的脱氮效果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号