首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An expert system for operation guidance will contribute to identifying the operatoration problems and indicating the resolutions thereof, because the information stored in the expert system can be utilized to resolve the corresponding technical problems. However, there are several problems that should be solved in the practical application of the expert system, such as lack of corresponding knowledge or resolutions utilized to cope with the problems, inapplicable resolutions, too many resolutions for the operators to choose from to obtain the best one in the first time, etc. Obtaining and storing as much as information in the database of the expert system are important issues in the construction process of the expert system. The accident analysis results contain a limited number of accident cases and the HAZOP analysis only refers to a single deviation analysis. This paper has presented a novel knowledge database construction method for an operation guidance expert system based on the HAZOP analysis and the accident analysis, which can be used to resolve the above problems. The HAZOP analysis results are combined with the accident analysis results and the combination information can be stored in the database of the expert system, and can be employed to forecast accidents or identify accident causes. The structures of the operation guidance table and the accident investigation table have been illustrated. The residuum hydrotreating process expert system is taken as an example to illustrate the knowledge database construction method. With the aid of this expert system, the operators will well understand the operations and adopt the best resolutions to deal with the abnormal situations. Also the operators can identify potential risks existing in the plant which will result in accidents according to the accident analysis results associated with the HAZOP analysis results.  相似文献   

2.
计算机辅助HAZOP技术的研究   总被引:1,自引:1,他引:0  
在HAZOP原理的基础上,讨论了计算机辅助HAZOP技术的优势,并针对传统的HAZOP、基于深层知识模型SDG的计算机辅助HAZOP和应用PHA-Pro软件3种方法进行了分析和比较;介绍了研发成功的针对开、停车过程和应急阶段顺序颠倒、操作步骤遗漏的人工误操作危险与可操作性分析系统MO-HAZOP;该系统具有定量计算出所有的人工误操作顺序组合的发生概率值,结合现有知识和专家经验,判定事件发生的风险等级,从而有重点地给出预防危险、保障生产安全的建议的功能;MO-HAZOP分析系统对于石化企业的安全生产具有重要意义。  相似文献   

3.
工艺危害分析强调运用系统的方法对危害进行辨识、分析,并采取必要的措施消除和减少危害。HAZOP分析能对工艺过程非常系统、全面的进行分析,但传统的HAZOP分析在量化风险时,对于偏差原因发生的可能性评价存在较大的主观性。本文对于没有统计资料的HAZOP分析偏差原因发生可能性,采用专家打分法,利用三角模糊数来表示其模糊发生概率。对于有统计资料的偏差原因,直接表示成三角模糊数。这种方法能够很好的表示HAZOP分析偏差发生概率。介绍了基于三角模糊数的HAZOP分析步骤,并在石油化工装置中进行了应用。这对HAZOP分析技术在石油化工装置中的推广具有重要意义。  相似文献   

4.
加氢装置属甲类火灾、爆炸危险生产装置。为了在设计阶段尽可能消除或控制潜在风险,本文总结了多套加氢装置HAZOP分析报告中的设备类别及其分析内容,提出了基于危险与可操作性(HAZOP)分析的加氢装置工程设计方法。在传统工程设计方法的基础上增加了参数敏感性工程设计方法,依据分析报告中的设计建议,利用ASPEN软件计算过程参数变化对目标参数的影响程度,确定参数稳定操作区域;建立了数据库管理界面实现了加氢装置工程安全设计经验知识的有序管理。应用基于HAZOP分析的加氢装置工程设计方法,有助于将安全隐患问题在设计阶段消除或加以控制,可为降低石化装置改造成本和提高装置的安全水平提供方法依据。  相似文献   

5.
Most process hazard analysis (PHA) studies today are conducted using traditional methods such as the hazard and operability study (HAZOP). Traditional methods are based on a chain-of-events model of accident causality. Current models of accident causality are based on systems theory and provide a more complete representation of the causal factors involved in accidents. Consequently, it is logical to expect that PHA methods should reflect these models, that is, system-theoretic hazard analysis (STHA) should be used. Indeed, system-theoretic process analysis (STPA) has been developed as such a method. STPA has been used in a variety of industries but, at this time, it has not gained acceptance by the process industries. This article explores the reasons for this situation. Expectations for PHA in the process industries are examined and issues for the application of STPA in the process industries are discussed. It is concluded that a variety of matters must be addressed before STPA can be considered as a viable PHA method for the process industries and the case for the use of STHA in the process industries is not yet proven.  相似文献   

6.
Accidents often occur in the petrochemical industry, which have a negative impact on society and the environment. Learning Process Safety Knowledge (PSK) from accident cases is essential to prevent accidents and improve safety level. Hazard and Operability Analysis (HAZOP) is a popular hazard risk analysis method. Its report contains large-scale PSK, which can provide safety analysis and decision support for the industry. Subject to the characteristics of PSK, existing researches mine them in the form of sequence labeling. However, there are two intractable problems that cause the PSK mined by the model to be inaccurate. (1) PSK in HAZOP is domain specific, which is rare or even absent in general-domain texts. (2) The entity boundaries are ambiguous. Most domain-specific entities for HAZOP lack boundary characters. Inaccurate security knowledge is not acceptable from the perspective of process safety engineering. To solve the problems, we present a PSK mining architecture with External Lexicon Prior knowledge called EDPMA, EDPMA is prior knowledge-based multi-task HAZOP knowledge mining model. Specifically, EDPMA consists of prior knowledge constructor and sequence labeling model. The prior knowledge constructor expresses prior knowledge in the form of word embedding by three steps. For the sequence annotation model, we improve its embedding and decoding layers. The former incorporated the word vectors generated by the prior knowledge constructor, and the latter added the task of entity boundary prediction. We conduct multiple evaluation experiments on HAZOP datasets. The experimental results show that the accuracy, recall and F1-score of the EDPMA model are 92.92%, 91.85% and 92.38% respectively, which is better than the existing research. Our study represents a meaningful attempt to introduce prior knowledge in HAZOP knowledge mining and makes an important contribution to intelligence the field of process safety.  相似文献   

7.
对传统的HAZOP分析中偏差原因发生可能性进行量化。对于有统计数据的,根据行业数据、公司经验及企业事故建立HAZOP风险分析统计数据库;对于没有统计数据的HAZOP分析偏差原因发生概率,通过专家主观评判,用模糊数理论将专家自然语言转换为模糊数,采用左右模糊排序法将模糊数转换为模糊失效概率值。研究了偏差后果严重程度的划分标准,并根据偏差原因概率和偏差后果严重程度确定风险等级,利用风险矩阵得出偏差风险的大小。从而把HAZOP分析方法从定性改进为半定量的分析方法。据此对石油化工装置进行了HAZOP风险分析。  相似文献   

8.
HAZOP分析方法是目前危险性分析领域最盛行的分析方法之一,广泛地应用于石油化工行业。但是其分析过程仅依靠专家积累的知识与经验,不仅评价的内容不严格,而且分析的可信程度有限,对实际工作的指导意义不高,不能适应工业现场的要求。鉴于HAZOP分析方法中的不足,提出了基于SDG模型的HAZOP分析方法,并利用该方法对钻井作业过程进行了危险性分析。基于SDG模型的HAZOP分析方法从复杂系统的内部逻辑入手,进行深层次的推理,不仅提高了分析效率,而且分析所得结果的完备性较好。  相似文献   

9.
HAZOP在油气管道站场风险分析中的应用实践   总被引:2,自引:1,他引:1  
针对长输油气管道站场具有高温高压、易燃易爆、压力容器集中、工艺条件苛刻、生产连续性强等特点,阐述了HAZOP(危险与可操作性研究)技术在长输管道站场风险分析中的必要性和应用步骤。通过HAZOP分析可确定站场主要的节点和有实际意义的偏差,通过分析偏差产生的原因、后果及可采取的对策,结合风险矩阵判定事故的风险等级。实例应用表明HAZOP能够识别出站场中存在的隐患,对隐患进行分级并提出针对性的建议措施,有助于企业进行隐患整治,对提高站场工艺设施及操作的安全可靠性、减少各类事故的发生有着十分积极的作用。  相似文献   

10.
As modern chemical plants are becoming more complex and bigger in scale, the associated chance of things going wrong is also increasing rapidly. Due to the flammable, explosive, toxic and corrosive nature of chemical process, any single accident may trigger a major catastrophe that brings tremendous environmental, social and economical loss. In order to prevent any accident from happening, hazard and operability (HAZOP) analysis has been brought in to monitor chemical process and provide early warning for signs of accident. However, most existing HAZOP is carried out manually, and there are always obstacles in terms of cost overrun and incompleteness of the analysis. To address the difficulties in current HAZOP method, this paper proposes a signed digraph (SDG)-based HAZOP analysis method. It is used to identify the most likely operating mistakes that may cause certain process variable deviating from its normal value, which is the main source of safety concern. A case study on polyvinyl chloride (PVC) plant is presented to demonstrate the effectiveness of SDG-based HAZOP analysis method in providing complete analysis result.  相似文献   

11.
HAZOP analysis is a process hazard analysis method that has been widely applied both within and outside the chemical processing industries. This paper presents a design method for a process safety data management program for petrochemical plants based on HAZOP analysis and demonstrates the steps of application involved in building a process safety data management system for an ethylene oxide/ethylene glycol production plant. Firstly, the production data files and relevant documents of the plants should be classified and stored in the program database as reference documents and treatment schemes for coping with abnormal situations should be collected and summarized as guidance documents. Secondly, the HAZOP analysis method is employed to identify all the dangerous deviations possibly existing in the production process of the ethylene oxide/ethylene glycol plant. Then, the relationships among the deviations, the reference documents and the guidance documents should be considered and evaluated. Finally, each dangerous deviation will be given a corresponding reference document and guidance document. The reference documents and guidance documents stored in the expert system can be utilized to help operators solve the corresponding technical problems and cope with abnormal situations. The process safety data management program will contribute to the identification, analysis and resolution of operation problems. When an abnormal situation occurs, according to the deviations exhibited in the system, the necessary reference documents and guidance documents will be quickly consulted by the operators, and an appropriate decision will be made to address the abnormal situation. Therefore, by using the process safety data management program, plant security and human safety in the petrochemical industries will be improved.  相似文献   

12.
为指导操作人员正确地处理化工生产过程中的问题,防范人为误操作导致的事故发生,开发了以化工生产的危险与可操作性分析结果和典型事故原因分析结果为知识库的事故预防信息系统.系统实时在线监测化工生产过程中的关键变量,通过判定变量间的影响关系,实现对化工生产过程潜在危险的辨识、预警并给予实时操作指导,以确保生产安全,提高装置的生产效率.最后,以丙烯聚合工艺为例,在多功能过程试验控制平台上进行了验证,探讨了事故预防信息系统的应用方法.  相似文献   

13.
Hazard and Operability (HAZOP) studies are conducted to identify and assess potential hazards which originate from processes, equipment, and process plants. These studies are human-centered processes that are time and labor-intensive. Also, extensive expertise and experience in the field of process safety engineering are required. There have been several attempts by different research groups to (semi-)automate HAZOP studies in the past. Within this research, a knowledge-based framework for the automatic generation of HAZOP worksheets was developed. Compared to other approaches, the focus is on representing semantic relationships between HAZOP relevant concepts under consideration of the degree of abstraction. In the course of this, expert knowledge from the process and plant safety (PPS) domain is embedded within the ontological model. Based on that, a reasoning algorithm based on semantic reasoners is developed to identify hazards and operability issues in a HAZOP similar manner. An advantage of the proposed method is that by modeling causal relationships between HAZOP concepts, automatically generated but meaningless scenarios can be avoided. The results of the enhanced causation model are high quality extended HAZOP worksheets. The developed methodology is applied within a case study that involves a hexane storage tank. The quality and quantity of the automatically generated results agree with the original worksheets. Thus the ontology-based reasoning algorithm is well-suited to identify hazardous scenarios and operability issues. Node-based analyses involving multiple process units can also be carried out by a slight adjustment of the method. The presented method can help to support HAZOP study participants and non-experts in conducting HAZOP studies.  相似文献   

14.
为提高煤化工生产工艺安全水平,降低事故发生的可能性和严重程度,有必要对其工艺过程中的危害因素进行全面系统的辨识分析。以某甲醇公司煤制甲醇气化装置为例,运用HAZOP方法准确识别工艺偏差危害因素,定性分析偏差产生的可能原因、后果及现有安全措施;在此基础上,运用FTA方法,获得顶上事件发生概率值和基本事件重要度结果,实现工艺设备设施危害因素的定性与定量分析,提出有针对性的建议安全措施。两种方法的综合应用,给予煤化工企业系统安全分析一种新的思路,使其得到更加科学准确的危险性分析结果,为企业开展危害因素的分级管理,有效预防和减少事故的发生提供了理论支撑。  相似文献   

15.
HAZOP方法通过结构化和系统化的方式识别潜在的危险与可操作性问题,在化工安全评价中得到了广泛应用.但其做为一种定性评价方法,定量化是其发展的趋势.探讨了定量化风险矩阵技术在HAZOP分析中应用的问题,研究提出了将火灾、爆炸危险指数方法应用于风险矩阵事故后果严重度的计算和将事故树评价方法应用于风险矩阵事故发生概率的计算,实现了风险矩阵的定量化并应用于不饱和聚酯树脂工艺HAZOP分析,为HAZOP分析的定量化提供了一种新的技术方法.  相似文献   

16.
The chemical process industries are characterized by the use, processing, and storage of large amounts of dangerous chemical substances and/or energy. Among different missions of chemical plants there are two very important ones, which: 1. provide a safe work environment, 2. fully protect the environment. These important missions can be achieved only by design of adequate safeguards for identified process hazards. Layer of Protection Analysis (LOPA) can successfully answer this question. This technique is a simplified process of quantitative risk assessment, using the order of magnitude categories for initiating cause frequency, consequence severity, and the likelihood of failure of independent protection layers to analyze and assess the risk of particular accident scenarios. LOPA requires application of qualitative hazard evaluation methods to identify accident scenarios, including initiating causes and appropriate safeguards. This can be well fulfilled, e.g., by HAZOP Studies or What-If Analysis. However, those techniques require extensive experience, efforts by teams of experts as well as significant time commitments, especially for complex chemical process units. In order to simplify that process, this paper presents another strategy that is a combination of an expert system for accident scenario identification with subsequent application of LOPA. The concept is called ExSys-LOPA, which employs, prepared in advance, values from engineering databases for identification of loss events specific to the selected target process and subsequently a accident scenario barrier model developed as an input for LOPA. Such consistent rules for the identification of accident scenarios to be analyzed can facilitate and expedite the analysis and thereby incorporate many more scenarios and analyze those for adequacy of the safeguards. An associated computer program is under development. The proposed technique supports and extends the Layer of Protection Analysis application, especially for safety assurance assessment of risk-based determination for the process industries. A case study concerning HF alkylation plant illustrates the proposed method.  相似文献   

17.
通过对国外风险矩阵和个体风险研究,同时结合国内相关法律法规和企业事故管理规定,首次提出风险矩阵制定的依据,为企业行业制定风险矩阵提供理论基础,并制定出适合自身企业的风险矩阵。将HAZOP分析方法与风险矩阵相结合,提出"HAZOP+风险矩阵"组合技术,并采用该组合技术对精对苯二甲酸(PTA)装置氧化反应器单元的危险与可操作性问题进行系统分析,识别出装置中存在的过程安全问题并提出建议,对整个装置重大工艺安全事故的预防和安全平稳运行起到重要作用。  相似文献   

18.
For more than 30 years, multiple research groups have worked on the automation of hazard and operability (HAZOP) studies, or more specifically on the hazard identification process. So far, very few of these approaches have been used in the chemical process industry. Automatic hazard identification is a knowledge-intensive process that demands high standards with regard to the way in which knowledge is stored and made available. There are various suitable approaches to the qualitative modeling of processes and plants, which are the foundation for reasoning systems that are used for the identification of hazards. Additionally, there are quantitative methods that are based on process simulations and can be used to identify potential hazards. The investigation of the state of research demonstrates that there are sophisticated technologies for automated systems that include powerful reasoning techniques. The benefits and shortcomings of existing technologies are discussed with regard to their industrial applicability. Often, the quality of the necessary specific and generic knowledge is not sufficient to detect potential hazardous events and operational malfunctions. Computer-aided HAZOP systems should be integrated with computer-aided design- or process simulation software using common data models based on the digital representation of the process plant. In order to be used by HAZOP practitioners automated systems need to be comprehensive, serve as specialized decision support systems, and be tested and evaluated using round robin tests.  相似文献   

19.
过程工业计算机辅助安全防护层分析技术进展   总被引:6,自引:2,他引:4  
介绍当前过程工业安全防护层分析(LOPA)的基本内容,研讨LOPA方法与深层次的危险和可操作性分析方法(HAZOP)之间的关系以及计算机辅助HAZOP的研究进展。针对人工LOPA方法的缺点,开发了SDG-HAZOP软件平台,为计算机辅助LOPA平台研发创造了先决条件。应用计算机辅助LOPA方法,使防护层的设置具有更好的针对性、合理性和有效性,发挥对事故的预防和预警作用,并具有良好的发展前景。  相似文献   

20.
合成氨装置的原料、产品危险性高,并且生产过程复杂,因此在运行过程中可能导致火灾、爆炸、中毒等事故,有些事故甚至给社会和环境造成严重破坏.对HAZOP研究与故障树分析进行组合,应用在合成氨装置的危险辨识中.通过HAZOP研究,合成氨主体装置共发现风险因素23项,其中合成氨装置的合成气压缩单元安全隐患较多,因此对其进行故障树分析,合成气压缩机单元火灾、爆炸故障树的最小割集为72个,最小径集为6个.从基本事件结构重要度结果来看,压缩机三级出口压力探测器( PIA3-2)故障,对压缩机发生火灾、爆炸的影响程度最大,应重点防范.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号