首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
• Quantitative global ARGs profile in dialysis water was investigated. • Totally 35 ARGs were found in the dialysis treatment train. • 29 ARGs (highest) were found in carbon filtration effluent. erm and mtrD-02 occurred in the final effluent. • The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks.  相似文献   

2.
• UV/chlorine can effectively remove VBNC pathogens, ARGs and MGEs in reclaimed water. • Microbial community was changed with reduced diversity during UV/chlorine process. • CRBs-carried MGEswere the predominant groups during UV/chlorine process. • No direct co-selection strategy was shared between UV/chlorine and resistome. Urban wastewater contains a wide range of pathogens and antibiotic resistance genes (ARGs), which are a serious concern if reusing treated wastewater. However, few studies have explored the microbial communities in reclaimed water using ultraviolet (UV)/chlorine treatment and assessed the changes of the resistome. This study investigated the occurrence of typical pathogens, ARGs, and bacterial communities in UV/chlorine-treated reclaimed water samples. The numbers of culturable and viable but non-culturable pathogens were effectively reduced to 0 CFU/mL within 1–10 and 10–30 min after UV/chlorine treatment, respectively. Meanwhile, the physicochemical indices of water quality were not affected. UV/chlorine treatment could significantly change the bacterial community structure of reclaimed water, showing a decrease in bacterial abundance and diversity. Chlorine-resistant Acinetobacter and Mycobacterium were the dominant bacterial genera (>50%) after UV/chlorine treatment. Moreover, the number of ARGs and mobile genetic elements (MGEs) decreased with an increase in UV/chlorine exposure. However, eight ARGs and three MGEs were consistently detected in more than three seasons, making these major concerns because of their potential role in the persistence and dissemination of antibiotic resistance. Overall, the results of this study suggest that UV/chlorine treatment can potentially improve the microbiological safety of reclaimed water. And more attention should be paid to the pathogens that are both chlorine-resistant and carry MGEs because of their potential for resistance transmission.  相似文献   

3.
• Distribution of ARGs in decentralized sewage facilities were investigated. • Bacitracin-ARGs were most predominant ARGs in rural wastewater. • ARGs were identified in bacterial and viral community. • ARGs of rpoB, drfE, gyrA and parC were both correlated with bacteria and phages. • More attention should be paid to the risk of spreading ARG by phages. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG’s proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary.  相似文献   

4.
• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD. • Thermophilic AD was more effective in eliminating resistance genes than mesophilic. • ARGs variations in AD were mainly affected by succession of microbial community. • Methane production was significant associated to ARGs reduction. The role of norfloxacin (NOR) and sulfamethoxazole (SMX) in mesophilic and thermophilic anaerobic digestion (AD) of pig manure, with respect to methane production and variations in the microbial community and resistance genes, including antibiotic resistance genes (ARGs), class I integrase (intI1), and heavy metal resistance genes (MRGs), was investigated. The results indicated that NOR exerted little influence on the microbial community, whereas SMX negatively affected the acetoclastic methanogens. The abundance of two sulfonamide resistance genes (sul1 and sul2), three quinolone resistance genes (qnrS, parC, and aac(6’)-Ib-cr), and intI1 decreased by 2‒3 orders of magnitude at the end of thermophilic AD. In contrast, mesophilic AD was generally ineffective in reducing the abundance of resistance genes. According to the results of redundancy analysis, the abundance of ARGs was affected primarily by microbial community dynamics (68.5%), rather than the selective pressure due to antibiotic addition (13.3%). Horizontal gene transfer (HGT) through intI1 contributed to 26.4% of the ARG variation. The archaeal community also influenced the changes in the resistance genes, and ARG reduction was significantly correlated with enhanced methane production. Thermophilic AD presented a higher methane production potential and greater reduction in resistance gene abundance.  相似文献   

5.
• Manure fertilization resulted in antibiotic residues and increased metal contents. • The tet and sul genes were significantly enhanced with manure fertilization. • Soil physicochemical properties contributed to 12% of the variations in ARGs. • Soil metals and antibiotics co-select for ARGs. Pig manure, rich in antibiotics and metals, is widely applied in paddy fields as a soil conditioner, triggering the proliferation of antibiotic resistance genes (ARGs) in soil. However, comprehensive studies on the effects of manure fertilization on the abundance of ARGs and their influencing factors are still insufficient. Here, pig manure and manure-amended and inorganic-amended soils were collected from 11 rice-cropping regions in eastern China, and the accumulation of antibiotics, metals, and ARGs was assessed simultaneously. The results showed that manure fertilization led to antibiotic residues and increased the metal content (i.e., Zn, Cu, Ni, and Cr). Tetracycline and sulfonamide resistance genes (tetM, tetO, sul1, and sul2) were also significantly enhanced with manure fertilization. According to variance partitioning analysis, the most important factors that individually influenced ARGs were soil physicochemical properties, accounting for 12% of the variation. Significant correlations between soil nutrients and ARGs indicated that manure application enhanced the growth of resistant microorganisms by supplying more nutrients. Metals and antibiotics contributed 9% and 5% to the variations in ARGs, respectively. Their co-occurrence also increased the enrichment of ARGs, as their interactions accounted for 2% of the variation in ARGs. Interestingly, Cu was significantly related to most ARGs in the soil (r = 0.26–0.52, p<0.05). Sulfapyridine was significantly related to sul2, and tetracycline resistance genes were positively related to doxycycline. This study highlighted the risks of antibiotic and ARG accumulation with manure fertilization and shed light on the essential influencing factors of ARGs in paddy soils.  相似文献   

6.
• Total 174 subtypes of ARGs were detected by metagenomic analysis. • Chloramphenicol resistance genes were the dominant ARGs in water and microplastics. • The abundances of MRGs were much higher than those of ARGs. • Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phylum. • Microplastics in mariculture system could enrich most of MRGs and some ARGs. Microplastics existing widely in different matrices have been regarded as a reservoir for emerging contaminants. Mariculture systems have been observed to host microplastics and antibiotic resistance genes (ARGs). However, more information on proliferation of ARGs and metal resistance genes (MRGs) in mariculture system at the presence of microplastics is needed. This study used metagenomic analysis to investigate the distribution of ARGs and MRGs in water and microplastics of a typical mariculture pond. Total 18 types including 174 subtypes of ARGs were detected with the total relative abundances of 1.22/1.25 copies per 16S rRNA copy for microplastics/water. Chloramphenicol resistance genes were the dominant ARGs with the abundance of 0.35/0.42 copies per 16S rRNA copy for microplastics/water. Intergron intI1 was dominant gene among 6 detected mobile genetic elements (MGEs) with the abundance of 75.46/68.70 copies per 16S rRNA copy for water/microplastics. Total 9 types including 46 subtypes of MRGs were detected with total abundance of 5.02 × 102/6.39 × 102 copies per 16S rRNA copy for water/ microplastics while genes resistant to copper and iron served as the dominant MRGs. Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 84.2%/89.5% of total microbial community. ARGs with relatively high abundance were significantly positively related to major genera, MGEs, and MRGs. Microplastics in mariculture system could enrich most of MRGs and some ARGs to serve as potential reservoir for these pollutants. The findings of this study will provide important information on resistance gene pollution at presence of microplastics in the mariculture system for further proposing suitable strategy of environmental management.  相似文献   

7.
Extracellular DNA structure damaged by chlorination was characterized. Integrity of extracellular ARG genetic information after chlorination was determined. Typical chlorine doses will likely effectively diminish extracellular DNA and ARGs. Plasmid DNA/ARGs were less readily broken down than genomic DNA. The Bioanalyzer methodology effectively documented damage incurred to DNA. There is a need to improve understanding of the effect of chlorine disinfection on antibiotic resistance genes (ARGs) in order to advance relevant drinking water, wastewater, and reuse treatments. However, few studies have explicitly assessed the physical effects on the DNA. Here we examined the effects of free chlorine (1–20 mg Cl2/L) on extracellular genomic, plasmid DNA and select ARGs. Chlorination was found to decrease the fluorometric signal of extracellular genomic and plasmid DNA (ranging from 0.005 to 0.05 mg/mL) by 70%, relative to a no-chlorine control. Resulting DNA was further subject to a fragment analysis using a Bioanalyzer, indicating that chlorination resulted in fragmentation. Moreover, chlorine also effectively deactivated both chromosomal- and plasmid-borne ARGs, mecA and tetA, respectively. For concentrations >2 mg Cl2//L × 30 min, chlorine efficiently reduced the qPCR signal when the initial concentration of ARGs was 105 copies/mL or less. Notably, genomic DNA and mecA gene signals were more readily reduced by chlorine than the plasmid-borne tetA gene (by ~2 fold). Based on the results of qPCR with short (~200 bps) and long amplicons (~1200 bps), chlorination could destroy the integrity of ARGs, which likely reduces the possibility of natural transformation. Overall, our findings strongly illustrate that chlorination could be an effective method for inactivating extracellular chromosomal- and plasmid-borne DNA and ARGs.  相似文献   

8.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

9.
• Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.  相似文献   

10.
• The α-diversities of resistome were lower in manure and compost than in soils. • There were significant correlations between the resistome and bacterial taxonomy. • Bacterial taxonomy was the highest in explaining resistome variances. Antibiotic resistance genes comprising antibiotic resistome are of great concern due to their increase in the environment. Recent evidence of shared resistomes between soils and animal husbandry has imposed potential risks to human health. However, the correlation between a given community’s resistome and bacterial taxonomic composition is controversial. Here, a transmission chain of resistomes from swine manure to compost and compost-amended soil were analyzed in five suburban areas of Beijing, China, with unamended agricultural soils as control soils. Antibiotic resistomes and bacterial taxonomic compositions were distinct between (I) manure and compost; and (II) compost-amended and control soils. In manure, compost, and compost-amended soils, the β-diversity of the resistome and bacterial taxonomic composition was significantly correlated, while no correlation was detected in control soils. Bacterial taxonomic composition explained 36.0% of total variations of the resistome composition, much higher than environmental factors. Together, those results demonstrated that antibiotic resistome was closely related to bacterial taxonomic composition along the suburban transmission chain.  相似文献   

11.
• ARGs were detected in livestock manure, sludge, food waste and fermentation dregs. • The succession of microbial community is an important factor affecting ARGs. • Horizontal transfer mechanism of ARGs during composting should be further studied. Antibiotic resistance genes (ARGs) have been diffusely detected in several kinds of organic solid waste, such as livestock manure, sludge, antibiotic fermentation residues, and food waste, thus attracting great attention. Aerobic composting, which is an effective, harmless treatment method for organic solid waste to promote recycling, has been identified to also aid in ARG reduction. However, the effect of composting in removing ARGs from organic solid waste has recently become controversial. Thus, this article summarizes and reviews the research on ARGs in relation to composting in the past 5 years. ARGs in organic solid waste could spread in different environmental media, including soil and the atmosphere, which could widen environmental risks. However, the conventional composting technology had limited effect on ARGs removal from organic solid waste. Improved composting processes, such as hyperthermophilic temperature composting, could effectively remove ARGs, and the HGT of ARGs and the microbial communities are identified as vital influencing factors. Currently, during the composting process, ARGs were mainly affected by three response pathways, (I) “Microenvironment-ARGs”; (II) “Microenvironment-microorganisms-ARGs”; (III) “Microorganisms-horizontal gene transfer-ARGs”, respectively. Response pathway II had been studied the most which was believed that microbial community was an important factor affecting ARGs. In response pathway III, mainly believed that MGEs played an important role and paid less attention to eARGs. Further research on the role and impact of eARGs in ARGs may be considered in the future. It aims to provide support for further research on environmental risk control of ARGs in organic solid waste.  相似文献   

12.
• NOM formed more C-DBPs while amino acids formed more N-DBPs during chlorination • Aspartic acid and asparagine showed the highest toxicity index during chlorination • Dichloroacetonitrile might be a driving DBP for cytotoxicity and genotoxicity • Dichloroacetonitrile dominated the toxicity under different chlorination conditions Chlorination, the most widely used disinfection process for water treatment, is unfortunately always accompanied with the formation of hazardous disinfection byproducts (DBPs). Various organic matter species, like natural organic matter (NOM) and amino acids, can serve as precursors of DBPs during chlorination but it is not clear what types of organic matter have higher potential risks. Although regulation of DBPs such as trihalomethanes has received much attention, further investigation of the DBPs driving toxicity is required. This study aimed to identify the important precursors of chlorination by measuring DBP formation from NOM and amino acids, and to determine the main DBPs driving toxicity using a theoretical toxicity evaluation of contributions to the cytotoxicity index (CTI) and genotoxicity index (GTI). The results showed that NOM mainly formed carbonaceous DBPs (C-DBPs), such as trichloromethane, while amino acids mainly formed nitrogenous DBPs (N-DBPs), such as dichloroacetonitrile (DCAN). Among the DBPs, DCAN had the largest contribution to the toxicity index and might be the main driver of toxicity. Among the precursors, aspartic acid and asparagine gave the highest DCAN concentration (200 g/L) and the highest CTI and GTI. Therefore, aspartic acid and asparagine are important precursors for toxicity and their concentrations should be reduced as much as possible before chlorination to minimize the formation of DBPs. During chlorination of NOM, tryptophan, and asparagine solutions with different chlorine doses and reaction times, changes in the CTI and GTI were consistent with changes in the DCAN concentration.  相似文献   

13.
• PPCPs had the highest removal efficiency in A2O combined with MBR process (86.8%). • ARGs and OPFRs were challenging to remove (6.50% and 31.0%, respectively). • Octocrylene and tris(2-ethylhexyl) phosphate posed high risks to aquatic organisms. • Meta-analysis was used to compare the ECs removal in wastewater treatment. • Membrane treatment technology is the most promising treatment for ECs removal. Reclaimed water has been widely applied in irrigation and industrial production. Revealing the behavior of emerging contaminants in the production process of reclaimed water is the first prerequisite for developing relevant water quality standards. This study investigated 43 emerging contaminants, including 22 pharmaceuticals and personal care products (PPCPs), 11 organophosphorus flame retardants (OPFRs), and 10 antibiotic resistance genes (ARGs) in 3 reclaimed wastewater treatment plants (RWTPs) in Beijing. The composition profiles and removal efficiencies of these contaminants in RWTPs were determined. The results indicated that the distribution characteristics of the different types of contaminants in the three RWTPs were similar. Caffeine, sul2 and tris(1-chloro-2-propyl) phosphate were the dominant substances in the wastewater, and their highest concentrations were 27104 ng/L, 1.4 × 107 copies/mL and 262 ng/L, respectively. Ofloxacin and sul2 were observed to be the dominant substances in the sludge, and their highest concentrations were 5419 ng/g and 3.7 × 108 copies/g, respectively. Anaerobic/anoxic/oxic system combined with the membrane bioreactor process achieved a relatively high aqueous removal of PPCPs (87%). ARGs and OPFRs were challenging to remove, with average removal rates of 6.5% and 31%, respectively. Quantitative meta-analysis indicated that tertiary treatment processes performed better in emerging contaminant removal than secondary processes. Diethyltoluamide exhibited the highest mass load discharge, with 33.5 mg/d per 1000 inhabitants. Octocrylene and tris(2-ethylhexyl) phosphate posed high risks (risk quotient>1.0) to aquatic organisms. This study provides essential evidence to screen high priority pollutants and develop corresponding standard in RWTPs.  相似文献   

14.
• Anammox is promising for nitrogen removal from antibiotic-containing wastewater. • Most antibiotics could inhibit the anammox performance and activity. • Antibiotic pressure promoted the increase in antibiotic resistance genes (ARGs). • Antibiotic-resistance mechanisms of anammox bacteria are speculated. Antibiotic is widely present in the effluent from livestock husbandry and the pharmaceutical industry. Antibiotics in wastewater usually have high biological toxicity and even promote the occurrence and transmission of antibiotic resistant bacteria and antibiotic resistance genes. Moreover, most antibiotic-containing wastewater contains high concentration of ammonia nitrogen. Improper treatment will lead to high risk to the surrounding environment and even human health. The anaerobic ammonium oxidation (anammox) with great economic benefit and good treatment effect is a promising process to remove nitrogen from antibiotic-containing wastewater. However, antibiotic inhibition has been observed in anammox applications. Therefore, a comprehensive overview of the single and combined effects of various antibiotics on the anammox system is conducted in this review with a focus on nitrogen removal performance, sludge properties, microbial community, antibiotic resistance genes and anammox-involved functional genes. Additionally, the influencing mechanism of antibiotics on anammox consortia is summarized. Remaining problems and future research needs are also proposed based on the presented summary. This review provides a better understanding of the influences of antibiotics on anammox and offers a direction to remove nitrogen from antibiotic-containing wastewater by the anammox process.  相似文献   

15.
The distributions of ARGs were monitored in a WWTP in Harbin during six months. CASS had the best removal efficacy of ARGs compared to other processes in the WWTP. UV disinfection could effectively control the HGT. AGAC significantly remove ARGs and organics due to its high absorption capacity. Combination of ozone and AGAC significantly improve removal of ARGs and organics. Antibiotic resistance genes (ARGs) pose a serious threat to public health. Wastewater treatment plants (WWTPs) are essential for controlling the release of ARGs into the environment. This study investigated ARG distribution at every step in the treatment process of a municipal WWTP located in Harbin for six consecutive months. Changes in ARG distribution involved in two advanced secondary effluent treatment processes, ozonation and granular activated carbon (GAC) adsorption, were analyzed. Biological treatment resulted in the highest ARG removal (0.76–1.94 log reduction), followed by ultraviolet (UV) disinfection (less than 0.5-log reduction). Primary treatment could not significantly remove ARGs. ARG removal efficiency increased with an increase in the ozone dose below 40 mg/L. However, amorphous GAC (AGAC) adsorption with a hydraulic retention time (HRT) of 1 h showed better removal of ARGs, total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) than ozonation at a 60 mg/L dose. UV treatment could efficiently reduce the relative ARG abundance, despite presenting the lowest efficiency for the reduction of absolute ARG abundance compared with GAC and ozone treatments. The combination of ozone and AGAC can significantly improve the removal of ARGs, TOC, TN and TP. These results indicate that a treatment including biological processing, ozonation, and AGAC adsorption is a promising strategy for removing ARGs and refractory organic substances from sewage.  相似文献   

16.
• Wide occurrence of Cr(VI) in US source drinking water. • A strong dependence of occurrence on groundwater sources. • Elucidate Redox and equilibrium chemistry of Cr(VI). • Sn(II)-based and TiO2-based reductive treatments hold extreme promise. • Key challenges include residual waste, Cr(VI) re-generation and socioeconomic drivers. Chromium (Cr) typically exists in either trivalent and hexavalent oxidation states in drinking water, i.e., Cr(III) and Cr(VI), with Cr(VI) of particular concern in recent years due to its high toxicity and new regulatory standards. This Account presented a critical analysis of the sources and occurrence of Cr(VI) in drinking water in the United States, analyzed the equilibrium chemistry of Cr(VI) species, summarized important redox reaction relevant to the fate of Cr(VI) in drinking water, and critically reviewed emerging Cr(VI) treatment technologies. There is a wide occurrence of Cr(VI) in US source drinking water, with a strong dependence on groundwater sources, mainly due to naturally weathering of chromium-containing aquifers. Challenges regarding traditional Cr(VI) treatment include chemical cost, generation of secondary waste and inadvertent re-generation of Cr(VI) after treatment. To overcome these challenges, reductive Cr(VI) treatment technologies based on the application of stannous tin or electron-releasing titanium dioxide photocatalyst hold extreme promise in the future. To moving forward in the right direction, three key questions need further exploration for the technology implementation, including effective management of residual waste, minimizing the risks of Cr(VI) re-occurrence downstream of drinking water treatment plant, and promote the socioeconomic drivers for Cr(VI) control in the future.  相似文献   

17.
• Seasonal and treatment-process variations in invertebrates in a DWTP were analyzed. • The propagation and leakage of invertebrates in BAC filter were the most serious. • Invertebrates can survive and reproduce in chlorine disinfected clear water tanks. • Proportions of endogenous invertebrates increased along the treatment process. Problems associated with excessive propagation and leakage of invertebrates in drinking water have received increasing attention in recent years. We performed a monthly survey of invertebrate abundance and taxa in the effluent of each treatment stage in a drinking water treatment plant between May 2015 and April 2016 and analyzed seasonal and treatment-process variations in invertebrates. The results showed that invertebrate abundances in raw water, effluent of the biological activated carbon (BAC) filter, and finished water significantly correlated with water temperature, whereas no correlation was observed between water temperature and invertebrate abundance in the effluents of the sedimentation tank and sand filter. The dominant taxa in the effluent of each treatment stage were rotifers, nematodes, and crustaceans. The sedimentation tank could efficiently remove invertebrates with an annual average removal rate of 92%. The propagation and leakage of invertebrates occurred in the sand and BAC filters but more seriously in the latter. The average reproduction rate in the BAC filter was 268.8% with rotifers as the taxon that leaked the most. Invertebrate survival and reproduction were also observed in the chlorine-disinfected clean water reservoir with an average reproduction rate of 41.9%. Owing to differences in chlorine resistance, the reproduction ability of the dominant taxa was in the order nematodes>crustaceans>rotifers. The proportion of endogenous invertebrates gradually increased along the treatment process. The average proportion of endogenous invertebrates in the finished water was higher than 79.0%. Our findings suggested that waterworks should pay more attention to endogenous invertebrate growth.  相似文献   

18.
Reviewed the change of ARGs and ARB in full-scale urban drinking water systems. Conventional processes are more promising than BAC process in ARGs removal. Mechanisms of ARGs enrichment and spread in BAC filter and DWDSs are discussed. Raise the need of future research on ARGs and ARB change in building plumbing systems. Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.  相似文献   

19.
• CWF is a sustainable POU water treatment method for developing areas. • CWF manufacturing process is critical for its filtration performance. • Simultaneous increase of flow rate and pathogen removal is a challenge. • Control of pore size distribution holds promises to improve CWF efficiency. • Novel coatings of CWFs are a promising method to improve contaminant removal. Drinking water source contamination poses a great threat to human health in developing countries. Point-of-use (POU) water treatment techniques, which improve drinking water quality at the household level, offer an affordable and convenient way to obtain safe drinking water and thus can reduce the outbreaks of waterborne diseases. Ceramic water filters (CWFs), fabricated from locally sourced materials and manufactured by local labor, are one of the most socially acceptable POU water treatment technologies because of their effectiveness, low-cost and ease of use. This review concisely summarizes the critical factors that influence the performance of CWFs, including (1) CWF manufacturing process (raw material selection, firing process, silver impregnation), and (2) source water quality. Then, an in-depth discussion is presented with emphasis on key research efforts to address two major challenges of conventional CWFs, including (1) simultaneous increase of filter flow rate and bacterial removal efficiency, and (2) removal of various concerning pollutants, such as viruses and metal(loid)s. To promote the application of CWFs, future research directions can focus on: (1) investigation of pore size distribution and pore structure to achieve higher flow rates and effective pathogen removal by elucidating pathogen transport in porous ceramic and adjusting manufacture parameters; and (2) exploration of new surface modification approaches with enhanced interaction between a variety of contaminants and ceramic surfaces.  相似文献   

20.
• The early corrosion process in the cast iron pipes was investigated. • The increase of NaOCl (<0.75 mg/L) accelerated the cast iron corrosion. • Biocorrosion caused by IOB could be divided into three stages in the early stage. • Synergistic and antagonistic effects exist between residual chlorine and IOB. Corrosion in drinking water distribution systems (DWDSs) may lead to pipe failures and water quality deterioration; biocorrosion is the most common type. Chlorine disinfectants are widely used in DWDSs to inhibit microorganism growth, but these also promote electrochemical corrosion to a certain extent. This study explored the independent and synergistic effects of chlorine and microorganisms on pipeline corrosion. Sodium hypochlorite (NaOCl) at different concentrations (0, 0.25, 0.50, and 0.75 mg/L) and iron-oxidizing bacteria (IOB) were added to the reaction system, and a biofilm annular reactor (BAR) was employed to simulate operational water supply pipes and explain the composite effects. The degree of corrosion became severe with increasing NaOCl dosage. IOB accelerated the corrosion rate at an early stage, after which the reaction system gradually stabilized. When NaOCl and IOB existed together in the BAR, both synergistic and antagonistic effects occurred during the corrosion process. The AOC content increased due to the addition of NaOCl, which is conducive to bacterial regrowth. However, biofilm on cast iron coupons was greatly influenced by the disinfectant, leading to a decrease in microbial biomass over time. More research is needed to provide guidelines for pipeline corrosion control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号