首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
乌鲁木齐土壤中多环芳烃的污染特征及生态风险评价   总被引:3,自引:1,他引:2  
在乌鲁木齐地区不同功能区采集28个表层土壤样品,对土壤中多环芳烃(PAHs)的污染特征进行研究,并运用正定矩阵因子分析法对其来源进行分析,采用苯并[a]芘的毒性当量浓度(TEQBa P)对PAHs的生态风险进行评价。研究显示,土壤中∑16 PAHs含量为331~15 799μg/kg,其平均值为(5 018±4 896)μg/kg(n=28),以3环、4环为主。∑16PAHs的浓度呈现出交通区工业区公园区农业区居民商业区的变化趋势;正定矩阵因子分析法表明,乌鲁木齐表层土壤中PAHs的主要来源及贡献分别为煤的燃烧(51.19%),汽油车燃烧(19.02%),柴油车燃烧(18.35%),机动车石油的泄漏(11.42%);53%的采样点TEQBa P值超过荷兰土壤标准目标参考值,主要集中在交通区和工业区。  相似文献   

2.
研究对比了山东省不同类型污染企业周边土壤中16种多环芳烃(PAHs)的污染水平,结果表明:化工、钢铁、焦化企业周边土壤中ΣPAHs范围分别为41.4μg/kg~804μg/kg、1 230μg/kg~1 945μg/kg和776μg/kg~1 299μg/kg,土壤中PAHs成分谱轮廓相似,4~6环PAHs占比普遍高于2~3环。特征比值法源解析表明,PAHs主要来源于煤、焦炉、木材等的不完全燃烧。企业周边土壤PAHs污染与企业产业结构有关,钢铁、焦化、石化等大量消耗化石燃料的企业周边土壤中10种PAHs的毒性当量浓度TEQ_(Bap)超标0.6倍~3.8倍,而高分子化工、精细化工、农药化工等企业周边土壤受PAHs污染较轻,均满足荷兰土壤质量标准。  相似文献   

3.
天津城郊土壤中PAHs含量特征及来源解析   总被引:4,自引:1,他引:3  
以天津市郊环城四区为研究对象,系统采集了环城四区95个表层土壤样品,利用高效液相色谱仪对16种PAHs进行分析测定,结果表明,西青、东丽、津南和北辰土壤中16种PAHs的总量范围分别为62.6~1 994.9、36.1~4 074.7、20.1~2 502.5、22.1~707.7μg/kg;平均含量分别为445.8、841.8、509.5、242.5μg/kg。四区中都以高环多环芳烃为主,西青、东丽、北辰和津南高环多环芳烃分别占多环芳烃总比例的45.4%、42.2%、38.8%和38.7%。空间分析的结果表明,靠近天津市市区样点土壤中多环芳烃的含量要明显高于远离市区土壤中多环芳烃的含量。利用环数PAHs的相对丰度和比值法对天津市郊环城四区土壤中多环芳烃的污染来源进行了解析,研究区土壤监测样点的PAHs主要来自燃烧源,少部分来自石油类来源或几种污染源的共同复合累加的作用。  相似文献   

4.
通过对A、B两地农田土壤及其潜在污染源燃煤尘、交通尘和尾气尘等样品中多环芳烃(PAHs)的检测,结果表明,A、B两地土壤样品中∑PAHs范围分别为290 ng/g~2. 53× 10~3ng/g和564 ng/g~5. 50× 10~3ng/g,污染程度为中等—严重,且呈现出由工业园区周边土壤到化工企业周边土壤至油田周边土壤逐渐加重的趋势。A、B两地不同固体样品中∑PAHs由高到低分别为尾气尘交通尘燃煤尘土壤和尾气尘交通尘土壤燃煤尘。源解析表明,研究区土壤中PAHs受混合源(石油源和燃烧源)污染。燃烧源既有石油及其精炼产品的燃烧,又有木材、煤燃烧。  相似文献   

5.
以江苏省某大型化工企业周边居民区为研究区域,调查企业主导风的下风向2 km范围内的居民区以及对照区积尘中多环芳烃(PAHs)含量,对16种PAHs污染分布和特征进行研究,并评估积尘PAHs通过暴露途径对人群健康风险。结果表明:居民区积尘中16种PAHs全部检出,污染区∑PAHs均值为2 294μg/kg,明显高于对照区145μg/kg;污染区7个测点中有6个测点苯并(a)芘出现超标,超标倍数为0. 17~2. 5倍;所测的16种PAHs化合物中蒽、荧蒽、芘、、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘浓度相对较高;通过PAHs主成分分析和特征比值判断,不完全燃烧源对积尘中PAHs贡献率达77. 4%,污染区PAHs来源呈现石油燃烧、煤燃烧以及石油源的复合污染特征,对照区PAHs主要来源为煤的不完全燃烧;以苯并(a)芘毒性等效浓度进行风险评估,污染区致癌风险值明显高于对照区,儿童摄入PAHs风险总体高于成人;对照区儿童和成人致癌风险均小于1×10~(-6),不存在致癌风险;污染区儿童和成人平均致癌风险值分别为3. 95×10~(-6)、2. 65×10~(-6),在可接受范围内,但存在潜在致癌风险。  相似文献   

6.
利用高效液相色谱分析技术对福建省茶园土壤中16种多环芳烃进行了定量分析,结果表明,PAHs的总量在0.622~812.0μg/kg之间,平均值为48.4μg/kg。其组成以3环的为主,4环次之,主成分分析和PAHs特征参数分析发现,福建省茶园土壤中多环芳烃主要以燃油、木柴和煤燃烧来源为主,部分样点存在油类排放污染。生态风险评价结果显示,福建省茶园土壤中多环芳烃已具有不利生物影响效应。  相似文献   

7.
通过在西安市三环内6个功能区布设62个采样点,采样分析其表层土壤中邻苯二甲酸酯(PAEs)质量比及其构成特征。结果表明,西安市表层土壤中DMP、DEP、BBP、DnBP、DEHP和DnOP平均值分别为0.188 mg/kg、0.187 mg/kg、0.091 mg/kg、4.174 mg/kg、6.122 mg/kg和0.188 mg/kg,6种PAEs总质量比(∑6PAEs)范围为1.54 mg/kg^153.17 mg/kg,平均值为10.95 mg/kg。6个功能区∑6PAEs从高到低为交通区>工业区>混合区>公园>文教区>住宅区。与其他城市表层土壤中PAEs值比较发现,DMP处于高水平,DEP、DnBP、DEHP和∑6 PAEs处于较高水平,BBP和DnOP处于中等水平。  相似文献   

8.
株洲市区农业土壤中多环芳烃的分布特征研究   总被引:3,自引:1,他引:2  
采集株洲市区农业土壤表层样品185个,用高效液相色谱法对16种多环芳烃(PAHs)进行检测结果表明,除萘外,其余15种PAHs均有不同程度的检出,以苯并[b]萤蒽、萤蒽和苯并菲等3或4环PAHs为主, ~5521μg/kg之间,平均280μg/kg.地域上,石峰区、芦淞区>天元区>荷塘区;从土地利用类型看,旱地>水田>林地.按Maliszewska-Kordybach土壤污染程度分级标准,株洲市区农业土壤总体上受到PAHs轻度污染,这些PAHs主要来源于工业生产、交通运输等过程中化石燃料的燃烧.  相似文献   

9.
南昌市周边农田土壤中多环芳烃的污染特征及来源分析   总被引:5,自引:0,他引:5  
采集南昌市周边三个县的18个农田表层土壤样品,采用液固萃取-层析净化-高效液相色谱分析技术,研究了土壤中16种优控多环芳烃类物质的含量和组分特征,运用主成分因子荷载方法分析了其污染来源,并初步评价了其风险水平。结果表明,该区域内农田土壤33.3%轻度污染,最高污染样点PAHs含量为422.8ng/g,最低污染样点PAHs含量为75.2ng/g,平均含量为197.9ng/g,且远离城市的农田土壤残留水平明显低于靠近城市的农田土壤;PAHs的组分特征为以毒性水平较低的低环化合物为主;其污染来源主要是煤、天然气和汽油燃烧组成的混合源。  相似文献   

10.
采用气相色谱质谱法对淄博市16家代表性污水处理厂污泥中有机污染物的赋存状况进行了分析研究,并运用风险商值(RQ)法对污泥中多环芳烃(PAHs)的生态风险进行了评价。结果表明,淄博市污水处理厂污泥中有机污染物的含量为1.35~35.89 mg/kg,平均值为11.48 mg/kg,不同有机污染物百分含量排序为邻苯二甲酸酯>苯酚类>卤代烃类>PAHs>硝基苯类>胺类>氯苯类>苯系物>硝基酚类=氯酚类>醚类。与其他地区相比,淄博市污水处理厂污泥中各类有机污染物的含量总体处于中低水平。此外,同一区县内的不同污水处理厂污泥中的有机污染物含量相近、种类及分布特征相似,不同区县间的有机污染物含量差异显著。风险评价结果显示,除极少数污水处理厂污泥中的萘、苊、芴、芘、苯并[b]荧蒽、总PAHs(∑PAHs)处于高风险水平外,淄博市污水处理厂污泥中的PAHs单体、∑PAHs总体处于中低风险水平。  相似文献   

11.
The main goal of this study was to evaluate the impacts of a middle-sized Finnish urban area on the quality of sediments in an adjacent boreal lake. We investigated the sources and distribution of organic pollutants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)) in the sediments from urban stormwater traps and from Lake Vesijärvi. Grab surface sediment samples were taken from Lake Vesijärvi at various distances (25–2,000 m) from four major stormwater drainage outlets and at 15 urban stormwater traps in areas with different degrees of urbanization. These samples were analysed for 16 PAHs and 28 PCBs with gas chromatography–mass spectrometry. The concentrations of pollutants in the lake sediments were elevated in the vicinity of the urban shore (∑PAH 3–16, ∑PCB up to 0.02–0.3 mg/kg dw) and decreased as a function of distance (∑PAH 0.1–2.5, ∑PCB 0.01–0.3 mg/kg dw at a distance of more than 500 m from the shore), whereas contamination levels in suburban areas were notably lower (∑PAH 0.1–3, ∑PCB?<?LOQ–0.03 mg/kg dw; did not decline with distance). Possible sources and pathways of contamination were also investigated. The majority of stormwater trap sediments contained predominantly asphalt-derived PAHs due to pulverized pavement. PAHs in lake sediments were of pyrogenic origin, including the combustion of gasoline, diesel and coal. Suggested pathways of lake contamination are urban runoff discharge, boat traffic and atmospheric deposition.  相似文献   

12.
The concentration, distribution, and origin of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in river sediments from the western and southern catchments of the Bohai Sea, China. A toxicity assessment of 28 sediment samples collected from 15 main rivers was conducted by utilizing threshold and probable effect concentrations (TEC and PEC, respectively) derived from consensus-based sediment quality guidelines. The concentrations of total PAHs (∑PAH16) ranged from 0.14 to 10,757 μg/kg dry weight (mean?=?1,368.6 μg/kg). The high concentrations of PAHs found in Binhai New Area of Tianjin and Binzhou City are likely the result of rapid population and heavy industry growth, resulting in elevated point and nonpoint source inputs of PAHs. Of the samples collected, samples 1 and 10 (7.1 % of the total) were categorized as toxic since some of the PAH concentrations exceeded the corresponding PECs. Twenty samples were classified as nontoxic, with both the individual PAH and the∑PAH16 concentrations falling below the corresponding TECs. Analyses of selected PAH isomer ratios aided in the identification of PAH origins, allowing for a discrimination between pyrogenic and petrogenic sources. Spatial variability confirmed source heterogeneity within the study area. The most significant PAH-associated contamination was found in the Beitang River and Ji Canal, which are located in Binhai New Area. The magnitude of contamination and the likelihood of an ongoing influx of PAHs support the need for a better understanding of pollution sources and methods for both control and sediment restoration.  相似文献   

13.
In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were detected in sewage sludge samples from four wastewater treatment plants (WWTPs) in Qingdao, China. These WWTPs differ in the type of treatment used and in the origin of the wastewater. The total amounts of PAHs in digested sludges ranged from 1.9645 to 6.5752 mg/kg, which did not exceed the projected European Union cut-off limits (6 mg/kg) for sludge found in farmland, except for the Haibohe WWTP. Significant differences were observed in overall PAH values between WWTPs receiving domestic effluents and those receiving industrial effluents. The total amounts of PAHs in digested sludge from the Licunhe and Haibohe WWTPs, which mainly received industrial effluents, were markedly higher than those of the Tuandao and Huangdao WWTPs, which received only domestic effluents. The distribution of PAH compounds in digested sludges were analysed. At the Tuandao, Huangdao and Licunhe WWTPs, 2-, 3-, 4-benzene rings were predominant, accounting for 100%, 99.8% and 99.0% of the sum concentration of 16 PAHs (∑PAHs), respectively. At the Haibohe WWTP, a large number of high molecular weight PAHs (5-, 6-benzene rings) were observed, accounting for 30% of the ∑PAHs. The sum of seven carcinogenic PAHs (∑PAHs-c) ranged from 0.8694 to 3.0389 mg/kg in four WWTPs. The highest value was found in the Haibohe WWTP. Moreover, the PAH concentrations in sludges from the different treatment processes in the Licunhe and Tuandao WWTPs are discussed.  相似文献   

14.
The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 μg/kg in soils, and 82 to 1,258 μg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable–soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun’an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun’an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and “stacked soil” on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.  相似文献   

15.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector in 105 topsoil samples from an industrial area around Bohai Bay, Tianjin in the North of China. Results demonstrated that concentrations of PAHs in 104 soil samples from this area ranged from 68.7 to 5,590 ng g???1 dry weight with a mean of ∑16PAHs 814 ± 813 ng g???1, which suggests that there exists mid to high levels of PAH contamination. The concentration of ∑16PAHs in one soil sample from Tianjin Port was exceptionally high (48,700 ng g???1). Ninety-three of the 105 soil samples were considered to be contaminated with PAHs (>200 ng g???1), and 25 were heavily polluted (>1,000 ng g???1). The sites with high PAHs concentration are mainly distributed around chemical industry parks and near highways. Two low molecular weight PAHs, naphthalene and phenanthrene, were the dominant components in the soil samples, which accounted for 22.1% and 10.7% of the ∑16PAHs concentration, respectively. According to the observed molecular indices, house heating in winter, straw stalk combustion in open areas after harvest, and petroleum input were common sources of PAHs in this area, while factory discharge and vehicle exhaust were the major sources around chemical industrial parks and near highways. Biological processes were probably another main source of low molecular weight PAHs.  相似文献   

16.
The level, distribution, compositional pattern, and possible sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soil of Shanghai were investigated. The concentrations ranged from 140.7 to 2,370.8 μg kg(?-1) for 21 PAHs and from 92.2 to 2,062.7 μg kg(?-1) for 16 priority PAHs, respectively. The higher level of PAHs was mainly distributed in the south and west of Shanghai region, and the lower concentration was found in Chongming Island. Generally, the composition pattern of PAHs was characterized with high molecular weight PAHs, the seven possible carcinogenic PAHs accounted for 4.8-50.8% of the total PAHs, and fluoranthene, pyrene, and benzo[b]fluoranthene were the most dominant components in soil samples. The correlation analysis suggested that low molecular weight PAHs and high molecular weight PAHs were originated from different sources and further corroborated that total organic carbon was a key soil property affecting the fate of persistent organic pollutants in the environment. The isomer ratios and principal component analysis indicated that PAHs in the investigated areas were derived primarily from combustion of biomass, coal, and petroleum. Compared to the soil quality standards of the Netherlands, all the target PAHs (except Ant) in most samples exceeded their target values. The Nemerow composite index based on the same soil quality standard showed that 69.4% of the soil samples were heavily polluted. The total BaP(eq) of ten Dutch target PAHs in 72% soil samples were higher than the reference total carcinogenic potency. Therefore, the agricultural soil in Shanghai is suffering from serious PAHs contamination.  相似文献   

17.
This study was performed to elucidate the distribution, concentration trend and possible source of polycyclic aromatic hydrocarbons (PAHs) in surface water and bed sediments of the Hungarian upper section of the Danube River and the Moson Danube branch. A total of 217 samples (water and sediments) were collected from four different sampling sites in the period of 2001–2010 and analysed for the 16 priority US Environmental Protection Agency PAHs. Concentrations of total 16 PAHs (∑PAHs) in water samples ranged from 25 to 1,208 ng/L, which were predominated by two- and three-ring PAHs. The ∑PAH concentrations in sediments ranged from 8.3 to 1,202.5 ng/g dry weight. Four-ring PAHs including fluoranthene and pyrene were the dominant species in sediment samples. A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected a pattern of pyrogenic input as a major source of PAHs. The levels of PAHs determined were compared with other sections of the Danube and other regions of the world.  相似文献   

18.
Urban road dust samples were collected from different land use areas in Suzhou, Wuxi, and Nantong, Yangtze River Delta, China. The dust samples were analyzed for the levels and compositional profiles of deca-polybrominated diphenyl ethers (Deca-BDE), 22 organochlorine pesticides (OCPs), and 16 polycyclic aromatic hydrocarbons (PAHs). The levels of BDE-209, ∑OCPs, and ∑PAHs in samples ranged from 4.01–1,439 μg/kg, 3.15–615 μg/kg, and 2.24–58.2 mg/kg, respectively. PAHs were the predominant target compounds in road dust samples, comprising on average 97.7 % of total compounds. The spatial gradient of the pollutants (commercial/residential area> industrial area > urban park concentrations) was observed in the present study. The results indicated that the levels of BDE-209, OCPs, and PAHs observed in road dust were usually linked to anthropogenic activities in the urban environment. In addition, there might be a reflection of current usage or emissions of OCPs in urban environment.  相似文献   

19.
Polycyclic aromatic hydrocarbons (16 EPA-PAHs) in urban surface soil from Jiaxing City were determined using HPLC. The total concentration of 16 EPA-PAHs was detected from 18.73 to 441.34 pg/g. Individual PAH occupation analysis demonstrates that four-ring PAHs comprise as much as 44.16% and were prevalent in the composition of PAH pollutants. The other components were two-ring PAHs (7.36%), three-ring PAHs (17.28%), five-ring PAHs (16.16%), and six-ring PAHs (15.04%). Source analysis on the characteristic ratios of anthracene(Ane)/[Ane+phenanthrene(Phe)], fluoranthene(Fla)/[Fla+pyrene(Pyr)], and benzo[a]pyrene(Bap)/benzo[g,h,i]perylene(Bgp) reveals that PAH pollutants originated mainly from coal combustion, but vehicular emission as a source was not negligible. All PAHs discussed in the paper have similar source in most sampling sites. The spatial distributions of pollution sources were closely related to geographic location, geographic condition, and living habit of indigenes. A linear relationship between 2-3-ring PAHs, 4-6-ring PAHs, SOM, and ∑PAHs were investigated and significant correlativity were expatiated lastly. It revealed that coefficient between 2-3-ring PAHs and ∑PAHs is 0.56, between 4-6-ring PAHs and ∑PAHs is 0.99, between SOM and ∑PAHs is 0.82.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号