首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The use of artificial recharge in Saskatchewan and the rest of Canada to improve rural community and farmstead domestic water supply has great potential. Approximately 75 percent of the people in rural Saskatchewan and 26 percent of all the people in Canada are dependent on ground water for their domestic water supply. Typically, this water is highly mineralized and is often unpalatable due to odor and taste. A source of readily available, high quality water to eliminate expensive chemical treatment of available water and long distance hauling would be of significant value to rural residents. Storage of high quality water in aquifers by injection through wells has been documented and has been shown to depend on the use of a surface water catchment system to provide the high quality water. Since air entrainment or formation clogging can occur in poorly operated recharge schemes, development of proper design and operation of recharging procedure is required. This can be accomplished by using an injection response computer model and a properly designed injection system. Small scale artificial recharge projects will provide a valuable commodity to rural water users and will promote sustainable and conjunctive use of surface and ground water resources.  相似文献   

2.
ABSTRACT: Changes in cropping patterns, water use, and profitability of producing sorghum with the LID (Limited Irrigation-Dryland) furrow irrigation system were compared with conventional irrigation practices. A recursive linear programming model was used to assess the economic impacts over a ten-year period. The analysis of various water resource situations in the High Plains of Texas indicated the LID system increased irrigated sorghum acreage over conventional practices. Although less irrigated and dryland wheat was generally produced, present value of returns increased from about $18 per acre to $50 per acre. Water use was slightly higher in most situations when using the LID system.  相似文献   

3.
ABSTRACT: The Hanging Gardens are a unique feature of Zion National Park. Knowledge of the source and residence time of water discharging from the Hanging Gardens is necessary to help preserve these features. Ground-water chemical and isotopic data distinguish the discharge from seeps and springs into two groups, one of low and one of high conductivity. Water with low conductivity likely originates as recharge near the seeps and springs, and it only interacts with the Navajo Sandstone. High conductivity water, on the other hand, originates as recharge on the tops of plateaus to the east, where it interacts with marine rocks of the Carmel Formation. Carbon dating of these ground waters indicates that the low conductivity water is essentially modern recharge, while the high conductivity water was recharged 1,000 to 4,000 years ago.  相似文献   

4.
Irrigated agriculture is a major economic contributor of the High Plains Region and it primarily relies on the High Plains Aquifer as a source of water. Over time, areas of the High Plains Aquifer have experienced drawdowns limiting its ability to supply sufficient water to sustain fully irrigated crop production. This among other reasons, including variable climatic factors and differences in state water policy, has resulted in some areas adopting and practicing deficit irrigation management. Considerable research has been conducted across the High Plains Aquifer region to identify locally appropriate deficit irrigation strategies. This review summarizes and discusses research conducted in Nebraska, Colorado, Kansas, and Texas, as well as highlights areas for future research. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

5.
The High Plains aquifer (HPA) is the primary water source for agricultural irrigation in the US Great Plains. The water levels in many locations of the aquifer have declined steadily over the past several decades because the rate of water withdrawals exceeds recharge, which has been a serious concern to the water resources management in the region. We evaluated temporal trends and variations in agricultural water use and hydroclimatic variables including precipitation, air temperature, reference evapotranspiration, runoff, groundwater level, and terrestrial water storage across the HPA region for different periods from 1985 to 2020 at the grid, county, or region scale. The results showed that water withdrawals decreased from 21.3 km3/year in 1985 to 18.2 km3/year in 2015, while irrigated croplands increased from 71,928 km2 in 1985 to 78,464 km2 in 2015 in the entire HPA. The hydroclimatic time-series showed wetting trends in most of the northern HPA, but drying and warming trends in the southern region from 1985 to 2020. The groundwater level time-series indicated flat trends in the north, but significant declining in the central and southern HPA. Trends in irrigation water withdrawals and irrigation area across the HPA were controlled by the advancement of irrigation systems and technologies and the management of sustainable water use, but also were affected by dynamical changes in the hydroclimatic conditions.  相似文献   

6.
ABSTRACT: This paper focuses on the development and testing of a mathematical model of an emergency ground water supply operated principally during periods of low streamflow. The process of ground water withdrawal and recharge is simulated taking account of streamflow, water demand, evapotranspiration, natural and artificial recharge and increased evapotranspiration due to artificial recharge, ground water pumpage, and streamflow contribution to pumped water. The model determines whether natural recharge is possible in less time than the return period of drought and also whether artificial recharge is needed. By simulating operation over a long period of time, the model can examine different droughts of short and long duration and can test the operating rules for ground water storage development in an area. Submodels analyze the components of the operating process including ground water flow into the stream, seepage losses, stream portion of well discharge due to induced infiltration and recharge from rainfall or water spreading. The model has been tested for areas in the humid northeastern United States.  相似文献   

7.
ABSTRACT: The Dakota aquifer, composed of the Dakota Sandstone and stratigraphically equivalent sandstone units of Cretaceous age, is the upper-most regional aquifer underlying the extensively developed High Plains aquifer of the midwestern United States. The concentration of dissolved solids in ground water of the Dakota aquifer ranges from less than 500 milligrams per liter in calcium bicarbonate type water in the eastern outcrop area to more than 100,000 milligrams per liter in sodium chloride type oilfield brine in the Denver Basin to the west. Preliminary maps showing the distribution of dissolved solids confirm the complex nature of the Dakota aquifer as inferred from stratigraphic and hydraulic evidence. Extensive vertical leakage through confining layers, local recharge at the truncated eastern boundary, and a barrier to recharge along the western edge of the Denver Basin are consistent with the distribution of hydraulic head and dissolved solids.  相似文献   

8.
ABSTRACT: Soil-water conditions provide valuable insight into the hydrologic system in an area. A soil-water balance quantitatively summarizes soil-water conditions and is based on climatic, soil, and vegetation characteristics that vary spatially and temporally. Soil-water balances in the Great Plains of the central United States were simulated for 1951–1980. Results of the simulations were mean annual estimates of infiltration, runoff, actual evapotranspiration, potential recharge, and consumptive water and irrigation requirements at 152 climatic data stations. A method was developed using a geographic information system to integrate and map the simulation results on the basis of spatially variable climatic, soil, and vegetation characteristics. As an example, simulated mean annual potential recharge was mapped. Mean annual potential-recharge rates ranged from less than 0.5 inch in much of the north-central and southwestern Great Plains to more than 10 inches in parts of eastern Texas and southwestern Arkansas.  相似文献   

9.
From 1971-1980, studies were conducted at Fresno, California, to identify and quantify, where possible, the soil and water chemistry, subsurface geologic, hydrologic, biologic, and operational factors that determine the long term (10-year) effectiveness of basin type artificial ground water recharge through alluvial soils. This paper updates previous findings and refers to publications that describe the geology beneath the basins and regional geology that determine the transmission and storage properties for local ground water management and chemical quality enhancement. High quality irrigation water from the Kings River was used for recharge. Construction and land costs for the present expanded facility 83 ha (205.2 ac) using three parcels of land were $1,457,100. The nine-year annual mean costs for only canal water, maintenance, and operation were $110.42/ha·m ($13.62/ac·ft) based on an average recharge rate of 1338 ha·m/yr (10,848 ac·ft/yr) at 86 percent facility efficiency. The measured end of season recharge rate averaged 14.97 ± 0.24 cm/day. The 10-year mean actual recharge rate based on actual water delivered, total ponded area, and total days of recharge was 12.1 cm/day.  相似文献   

10.
ABSTRACT: The potential for artificial ground water recharge by continuous flooding of dormant grapevines was evaluated in the San Joaquin Valley of California using the cultivar Thompson Seedless. The study was started in 1982 and was completed in 1985 after three complete flooding cycles during dormancy. An average daily rate of recharge of 80 mm/thy for a 32-day period each year was achieved through a clay loam soil. There were no adverse effects on the grapevines and yields in the flooded plots in any of the growing seasons following recharge periods. Yields were higher in the recharge plots than in the control plots in the last year of the study. We conclude that artificial ground water recharge by continuous flooding during grapevine dormancy is a viable recharge method.  相似文献   

11.
This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. For the example problem, the benefits of reduced average annual pumping lifts and reduced incremental subsidence are greater than the total costs of continuing the existing artificial recharge program. Benefits for reduced subsidence are strongly dependent on initial aquifer conditions. The second analysis compares the costs of continuing the artificial recharge program with the costs of a surface system which would achieve the same hydraulic effects. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. In evaluating a particular program, consideration should also be given to uncertainties in future supplies and demands for water as well as to the probability of extreme events such as droughts.  相似文献   

12.
A questionnaire was prepared and distributed among professionals from various fields, in an effort to gather public perception regarding recharge of groundwater using treated municipal wastewater. This was done as part of a study to assess the feasibility of implementing Soil Aquifer Treatment (SAT) using treated municipal wastewater in parts of central India. This paper presents the perception of people toward artificial recharge and determines the primary concerns among members of the public, so that these can be addressed while carrying out pilot studies. This is the first such public survey that has been carried out in India.The questionnaire was sent to approximately 500 people through e-mail and was uploaded on a popular online portal that deals with water and sanitation issues. 194 correctly filled questionnaires were collected, the results of which are presented in this paper. 87 (45%) questionnaires were filled by environmental professionals including members of the research community, teachers and public health and municipal corporation officials. The rest were filled by members of the general public, including 15 students and 48 non-environmental professionals. Out of 194 respondents, 64.4% were in favor of using treated municipal wastewater for artificial recharge of groundwater, 28.4% opposed and 7.2% remained indifferent.This survey revealed that the primary concern among respondents was the effectiveness of wastewater treatment in India, and not the recharge technique itself. More than 50% of those who support SAT expressed uncertainty as to whether secondary effluent from wastewater treatment plants is being treated to a quality suitable for injecting into the aquifer.  相似文献   

13.
Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty’s analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under “poor,” “moderate,” “good,” and “very good” groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.  相似文献   

14.
ABSTRACT: Space autocorrelation techniques have been used to reveal the nature and spatial distribution of precipitation in the Texas High Plains. Correlation in precipitation amounts varies with both distance and direction, dropping off rapidly with distance, particularly during the warm season. The analyses can be used to estimate storm characteristics in conjunction with a wide variety of problems dealing with irrigation, crop yields, drainage and water supply, and evaluation of artificial weather modification efforts.  相似文献   

15.
ABSTRACT: Santa Fe Country, New Mexico, has adopted a land-use policy in which zoning densities provide a balance between the water use on a parcel of land and the water supply available bencath that land. In two of four mapped hydrologic zones, ground water in storage will be allowed to be mined to exhaustion in 100 years (40 years in urban areas). Elsewhere, the policy is for a steady state with use balanced by recharge. Equations to determine storage or recharge can be solved using site specific data or regional estimates of hydrologic conditions. Substantial reductions in the lot size requirements are allowed if water conservation convenants are adopted. Public acceptance indicates that the policy successfully integrates technical and political concerns. It is simple to administer, yet reflects widely expressed public goals and values.  相似文献   

16.
重视地下水资源开发利用与保护   总被引:1,自引:0,他引:1  
季恒玉 《四川环境》1996,15(1):41-43
本文着重介绍了国内外地下水开发利用状况,以及造成水质严重污染,影响人类的生存,提出合理开发利用和保护地下水资源,已成为当今世界上的重要课题,提出了和措施,一,强调地下不和地表水是自然界水循环中两个密切相关的环境,必须统一管理,协调开发,二,应用计算机技术,建立管理模型。三,注意解决地表与地下水联合规划,海水入侵,地面沉降,工农业污染,人工回灌等,四,加强对水质和生态环境的保护。  相似文献   

17.
ABSTRACT: Ground water irrigation pumpage of the High Plains Aquifer is controlled at the state level in Texas and Oklahoma but at the regional level in Kansas and Nebraska. Critical declines in the aquifer that threatened the reliability of local public water supply wells prompted Nebraska's Upper Republican Natural Resources District (URNRD) to mandate water restrictions in 1978. Under current regulations, irrigators may not extract more than 1,842 millimeters of water per certified hectare (ha) in any five‐year period. Meter monitoring ensures that irrigators comply with restrictions. Farmers now incorporate irrigation scheduling into their cropping practices in order to meet URNRD controls. This study examines whether irrigators are using ground water efficiently while complying with pumpage limits. Crop irrigation requirements (CIR) from 1986 to 1999 were derived from a water balance approach incorporating Penman‐Monteith evapotranspira‐tion (ET) calculations from weather data supplied by the High Plains Climate Center automated weather station network. A ratio of average water pumped per well to the CIR was developed to verify irrigation efficiency. Results indicate that irrigation applications were less than CIR during most irrigation seasons. Irrigation efficiency increases can be attributed to crop rotations, favorable growing season precipitation, use of ET estimates to schedule irrigation, and water allocations limited to less than all certified hectares.  相似文献   

18.
Drought is a complex and highly destructive natural phenomenon that affects portions of the United States almost every year, and severe water deficiencies can often become catastrophic for agricultural production. Evapotranspiration (ET) by crops is an important component in the agricultural water budget; thus, it is advantageous to include ET in agricultural drought monitoring. The main objectives of this study were to (1) conduct a literature review of drought indices with a focus to identify a simple but simultaneously adequate drought index for monitoring agricultural drought in a semiarid region and (2) using the identified drought index method, develop and evaluate time series of that drought index for the Texas High Plains. Based on the literature review, the Standardized Precipitation‐Evapotranspiration Index (SPEI) was found to satisfy identified constraints for assessing agricultural drought. However, the SPEI was revised by replacing reference ET with potential crop ET to better represent actual water demand. Data from the Texas High Plains Evapotranspiration network was used to calculate SPEIs for the major irrigated crops. Trends and magnitudes of crop‐specific, time‐series SPEIs followed crop water demand patterns for summer crops. Such an observation suggests that a modified SPEI is an appropriate index to monitor agricultural drought for summer crops, but it was found to not account for soil water stored during the summer fallow period for winter wheat.  相似文献   

19.
ABSTRACT: This paper explores the adjustments and institutions that residents of the American High Plains prefer in coping with the depletion of the High Plains (Ogallaia) aquifer. The authors identify 48 possible adjustments and report on public preferences for them as determined from a mail survey of 956 respondents in 14 counties. For purposes of analysis, the adjustments are categorized into five groups: user practices, management policies, financial incentives and disincentives, technological fixes, and other. Preferences were also determined among five levels of government to enforce each of the adjustments. Adjustments associated with user conservation practices were generally most preferred while financial incentives and disincentives were least favored. Local groundwater management agencies were the most favored level of institution to administer conservation adjustments followed by the state, county, and federal levels. The most preferred option for 20 adjustments was that no agency should be involved. Respondents in agriculturally related occupations showed less support for water conservation laws and gave greater acceptance to the continuance of existing methods. Irrigators viewed the increasing cost of lifting water as a more serious problem than the depletion of groundwater.  相似文献   

20.
ABSTRACT: A two-layered confined-unconfined numerical model for flow and mass transport is developed for the San Jacinto Basin. The model structure is determined by the geological structure of the Basin and model parameters are calibrated using 20 years of historical records. The total number of historical head observations used for the flow model calibration is 1,117 and the total number of the estimated parameters is 91. The two-layered transport model is also calibrated using historical water quality records. Sensitivity analysis of the flow model shows that only 68 parameters (out of a total of 91) are relatively sensitive and reliable. However, the unreliable parameters (23 of them) are found to be insensitive and thus not significant to the prediction and management of conjunctive use of surface water and ground water. The developed flow model has been used to study the two proposed artificial recharge scenarios for the San Jacinto Basin. We have found that during a relatively dry condition, an artificial recharge rate of 80 acre-ft/day can be achieved during the recharge period October through January. However, for a relatively wet condition, only 80 percent of the proposed rate can be effectively stored in the Basin during these months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号