首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Eight conventions make up the biodiversity cluster of multilateral environmental agreements (MEAs) that provide the critical international legal framework for the conservation and sustainable use of nature. However, concerns about the rate of implementation of the conventions at the national level have triggered discussions about the effectiveness of these MEAs in halting the loss of biodiversity. Two main concerns have emerged: lack of capacity and resources and lack of coherence in implementing multiple conventions. We focused on the latter and considered the mechanisms by which international conventions are translated into national policy. Specifically, we examined how the Strategic Plan for Biodiversity 2011–2020 and the associated Aichi Biodiversity Targets have functioned as a unifying grand plan for biodiversity conservation. This strategic plan has been used to coordinate and align targets to promote and enable more effective implementation across all biodiversity-related conventions. Results of a survey of 139 key stakeholders from 88 countries suggests streamlining across ministries and agencies, improved coordination mechanisms with all relevant stakeholders, and better knowledge sharing between conventions could improve cooperation among biodiversity-related conventions. The roadmap for improving synergies among conventions agreed to at the 13th Convention on Biological Diversity's Conference of Parties in 2016 includes actions such as mechanisms to avoid duplication in national reporting and monitoring on conventions and capacity building related to information and knowledge sharing. We suggest the scientific community can actively engage and contribute to the policy process by establishing a science-policy platform to address knowledge gaps; improving data gathering, reporting, and monitoring; developing indicators that adequately support implementation of national plans and strategies; and providing evidence-based recommendations to policy makers. The latter will be particularly important as 2020 approaches and work to develop a new biodiversity agenda for the next decade is beginning.  相似文献   

2.
The first target of the Convention for Biological Diversity (Aichi target 1) was to increase public awareness of the values of biodiversity and actions needed to conserve it—a key prerequisite for other conservation targets. Monitoring success in achieving this target at a global scale has been difficult; however, increased digitization of human life in recent decades has made it easier to measure people's interests at an unprecedented scale and allows for a more comprehensive evaluation of Aichi target 1 than previously attempted. We used Google search volume data for over a thousand search terms related to different aspects of biodiversity and conservation to evaluate global interest in biodiversity and its conservation. We also investigated the correlation of interest in biodiversity and conservation across countries to variables related to biodiversity, economy, demography, research, education, internet use, and presence of environmental organizations. From 2013 to 2020, global searches for biodiversity components increased, driven mostly by searches for charismatic fauna (59% of searches were for mammal species). Searches for conservation actions, driven mostly by searches for national parks, decreased since 2019, likely due to the COVID-19 pandemic. Economic inequality was negatively correlated with interest in biodiversity and conservation, whereas purchasing power was indirectly positively correlated with higher levels of education and research. Our results suggest partial success toward achieving Aichi target 1 in that interest in biodiversity increased widely, but not for conservation. We suggest that increased outreach and education efforts aimed at neglected aspects of biodiversity and conservation are still needed. Popular topics in biodiversity and conservation could be leveraged to increase awareness of other topics with attention to local socioeconomic contexts.  相似文献   

3.
Ocean acidification is a substantial emergent threat to marine biodiversity and the goods and services it provides. Although efforts to address ocean acidification have been taken under the Convention on Biological Diversity (CBD), a far greater potential to do so exists by finding synergies between biodiversity conservation efforts and ocean acidification action. The ongoing process to develop a post-2020 global biodiversity framework offers an opportunity to ensure that opportunities for addressing ocean acidification are capitalized on and not overlooked. I argue that to achieve this, the following are needed: a technical integration of ocean acidification across the targets to be included in the post-2020 framework and a reframing of the issue as a biodiversity problem so as to highlight the synergies between existing biodiversity work and action needed to address ocean acidification. Given that the post-2020 framework is intended to establish the global biodiversity agenda for the coming decades, integration of ocean acidification will set a precedent for the other biodiversity-related conventions and encourage greater uptake of the issue across the wider international community. My approach is of direct relevance to those participating in the negotiations, both from a CBD Party perspective and the perspective of those advocating for a strong outcome to protect marine biodiversity and marine socioecological systems. My discussion of framing is relevant to those working beyond the CBD within other biodiversity-related conventions in which goals to address ocean acidification are sorely lacking.  相似文献   

4.
After their failure to achieve a significant reduction in the global rate of biodiversity loss by 2010, world governments adopted 20 new ambitious Aichi biodiversity targets to be met by 2020. Efforts to achieve one particular target can contribute to achieving others, but different targets may sometimes require conflicting solutions. Consequently, lack of strategic thinking might result, once again, in a failure to achieve global commitments to biodiversity conservation. We illustrate this dilemma by focusing on Aichi Target 11. This target requires an expansion of terrestrial protected area coverage, which could also contribute to reducing the loss of natural habitats (Target 5), reducing human‐induced species decline and extinction (Target 12), and maintaining global carbon stocks (Target 15). We considered the potential impact of expanding protected areas to mitigate global deforestation and the consequences for the distribution of suitable habitat for >10,000 species of forest vertebrates (amphibians, birds, and mammals). We first identified places where deforestation might have the highest impact on remaining forests and then identified places where deforestation might have the highest impact on forest vertebrates (considering aggregate suitable habitat for species). Expanding protected areas toward locations with the highest deforestation rates (Target 5) or the highest potential loss of aggregate species’ suitable habitat (Target 12) resulted in partially different protected area network configurations (overlapping with each other by about 73%). Moreover, the latter approach contributed to safeguarding about 30% more global carbon stocks than the former. Further investigation of synergies and trade‐offs between targets would shed light on these and other complex interactions, such as the interaction between reducing overexploitation of natural resources (Targets 6, 7), controlling invasive alien species (Target 9), and preventing extinctions of native species (Target 12). Synergies between targets must be identified and secured soon and trade‐offs must be minimized before the options for co‐benefits are reduced by human pressures.  相似文献   

5.
Comprehensive biodiversity assessments play an essential role in strengthening global and national conservation strategies. The recently announced first U.S. National Nature Assessment (NNA) provides an unparalleled opportunity to comprehensively review status and trends of biodiversity at all levels. This broad context can help in the coordination of actions to conserve individual species and ecosystems. The scientific assessments that informed the Kunming–Montreal Global Biodiversity Framework adopted at the 2022 Convention on Biological Diversity (CBD) conference of parties provide models for synthesizing information on trends at multiple levels of biodiversity, including decline in abundance and distribution of species, loss of populations and genetic diversity, and degradation and loss of ecosystems and their services. The assessments then relate these trends to data on drivers of biodiversity loss and pathways to their mitigation. The U.S. NNA can augment such global analyses and avoid the pitfalls encountered by previous U.S. efforts by ensuring policy-relevant design, data accessibility, and inclusivity in process and product and by incorporating spatial data relevant to national and subnational audiences. Although the United States is not formally a CBD party, an effective NNA should take full advantage of the global context by including indicators adopted at the 2022 meeting and incorporating an independent review mechanism that supports periodic stocktaking and ratcheting up of ambition in response to identified shortfalls in stemming biodiversity loss. The challenges to design of an effective U.S. assessment are relevant globally as nations develop assessments and reporting to support the new global biodiversity framework's targets. By considering and incorporating the diverse ways in which society values and benefits from nature, such assessments can help bridge the gap between research and conservation practice and communicate the extent of the biodiversity crisis to the public, fostering broad-based support for transformative change in humanity's relationship to the natural world.  相似文献   

6.
During 2021, Parties to the Convention on Biological Diversity (CBD) are expected to meet in Kunming, China, to agree on a new global biodiversity framework aimed at halting and reversing biodiversity loss, encouraging the sustainable use of biodiversity, and ensuring the equitable sharing of its benefits. As the post-2020 global biodiversity framework evolves, parties to the convention are being exposed to a range of perspectives on the conservation and sustainable use of biodiversity, relating to the future framework as a whole or to aspects of it. Area-based conservation measures are one such aspect, and there are diverse perspectives on how new targets might be framed in relation to these measures. These perspectives represent different outlooks on the relationship between human and nonhuman life on Earth. However, in most cases there is a lack of clarity on how they would be implemented in practice, the implications this would have for biodiversity and human well-being, and how they would contribute to achieving the 2050 Vision for Biodiversity of “living in harmony with nature.” We sought to clarify these issues by summarizing some of these perspectives in relation to the future of area-based biodiversity conservation. We identified these perspectives through a review of the literature and expert consultation workshops and compiled them into 4 main groups: Aichi+, ambitious area-based conservation perspectives, new conservation, and whole-earth conservation. We found that although the perspectives Aichi+ and whole earth are in some cases at odds with one another, they also have commonalities, and all perspectives have elements that can contribute to developing and implementing the post-2020 global biodiversity framework and achieving the longer term CBD 2050 Vision.  相似文献   

7.
Recognizing that protected areas (PAs) are essential for effective biodiversity conservation action, the Convention on Biological Diversity established ambitious PA targets as part of the 2020 Strategic Plan for Biodiversity. Under the strategic goal to “improve the status of biodiversity by safeguarding ecosystems, species, and genetic diversity,” Target 11 aims to put 17% of terrestrial and 10% of marine regions under PA status by 2020. Additionally and crucially, these areas are required to be of particular importance for biodiversity and ecosystem services, effectively and equitably managed, ecologically representative, and well‐connected and to include “other effective area‐based conservation measures” (OECMs). Whereas the area‐based targets are explicit and measurable, the lack of guidance for what constitutes important and representative; effective; and OECMs is affecting how nations are implementing the target. There is a real risk that Target 11 may be achieved in terms of area while failing the overall strategic goal for which it is established because the areas are poorly located, inadequately managed, or based on unjustifiable inclusion of OECMs. We argue that the conservation science community can help establish ecologically sensible PA targets to help prioritize important biodiversity areas and achieve ecological representation; identify clear, comparable performance metrics of ecological effectiveness so progress toward these targets can be assessed; and identify metrics and report on the contribution OECMs make toward the target. By providing ecologically sensible targets and new performance metrics for measuring the effectiveness of both PAs and OECMs, the science community can actively ensure that the achievement of the required area in Target 11 is not simply an end in itself but generates genuine benefits for biodiversity.  相似文献   

8.
To help stem the continuing decline of biodiversity, effective transfer of technology from resource‐rich to biodiversity‐rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource‐rich to biodiversity‐rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one‐to‐many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure‐state‐response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in‐depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.  相似文献   

9.
Dynamics in the global protected-area estate since 2004   总被引:1,自引:0,他引:1  
Nations of the world have committed to a number of goals and targets to address global environmental challenges. Protected areas have for centuries been a key strategy in conservation and play a major role in addressing current challenges. The most important tool used to track progress on protected-area commitments is the World Database on Protected Areas (WDPA). Periodic assessments of the world's protected-area estate show steady growth over the last 2 decades. However, the current method, which uses the latest version of the WDPA, does not show the true dynamic nature of protected areas over time and does not provide information on sites removed from the WDPA. In reality, this method can only show growth or remain stable. We used GIS tools in an approach to assess protected-area change over time based on 12 temporally distinct versions of the WDPA that quantify area added and removed from the WDPA annually from 2004 to 2016. Both the narrative of continual growth of protected area and the counter-narrative of protected area removal were overly simplistic. The former because growth was almost entirely in the marine realm and the latter because some areas removed were reprotected in later years. On average 2.5 million km2 was added to the WDPA annually and 1.1 million km2 was removed. Reasons for the inclusion and removal of protected areas in the WDPA database were in part due to data-quality issues but also to on-the-ground changes. To meet the 17% protected-area component of Aichi Biodiversity Target 11 by 2020, which stood at 14.7% in 2016, either the rate of protected-area removal must decrease or the rate of protected-area designation and addition to the WDPA must increase.  相似文献   

10.
Although threats to global biodiversity are well known, slowing current rates of biodiversity loss remains a challenge. The Aichi targets set out 20 goals on which the international community should act to alleviate biodiversity decline, 1 of which (Target 1) aims to raise public awareness of the importance of biodiversity. Although conventional indicators for Target 1 are of low spatial and temporal coverage, conservation culturomics metrics show how biodiversity awareness can be quantified at the global scale. Following methods used for the Living Planet Index, we devised a species awareness index (SAI) to measure change in species awareness based on Wikipedia views. We calculated this index at the page level for 41,197 species listed by the International Union for Conservation of Nature (IUCN) across 10 Wikipedia languages and >2 billion views from 1 July 2015 to 30 March 2020. Bootstrapped indices for the page-level SAI showed that overall awareness of biodiversity increased marginally over time, although there were differences among taxonomic classes and languages. Among taxonomic classes, overall awareness increased fastest for reptiles and slowest for amphibians. Among languages, overall species awareness increased fastest for Japanese and slowest for Chinese and German users. Although awareness of species as a whole increased and was significantly higher for traded species, from January 2016 through January 2020, change in awareness appeared not to be strongly related to whether the species is traded or is a pollinator. As a data source for public biodiversity awareness, the SAI could be integrated into the Conservation International Biodiversity Engagement Indicator.  相似文献   

11.
The Convention on Biological Diversity's (CBD) strategic plan will expire in 2020, but biodiversity loss is ongoing. Scientists call for more ambitious targets in the next agreement. The nature-needs-half movement, for example, has advocated conserving half of Earth to solve the biodiversity crisis, which has been translated to protecting 50% of each ecoregion. We evaluated current protection levels of ecoregions in the territory of one of the CBD's signatories, the European Union (EU). We also explored the possible enlargement of the Natura 2000 network to implement 30% or 50% ecoregion coverage in the EU member states’ protected area (PA) network. Based on the most recent land-use data, we examined whether ecoregions have enough natural area left to reach such high coverage targets. We used a spatially explicit mixed integer programing model to estimate the least-cost expansion of the PA network based on 3 scenarios that put different emphasis on total conservation cost, ecological representation of ecosystems, or emphasize an equal share of the burden among member states. To realize 30% and 50% ecoregion coverage, the EU would need to add 6.6% and 24.2%, respectively, of its terrestrial area to its PA network. For all 3 scenarios, the EU would need to designate most recommended new PAs in seminatural forests and other semi- or natural ecosystems. Because 15 ecoregions did not have enough natural area left to implement the ecoregion-coverage targets, some member states would also need to establish new PAs on productive land, allocating the largest share to arable land. Thirty percent ecoregion coverage was met by protecting remaining natural areas in all ecoregions except 3, where productive land would also need to be included. Our results support discussions of higher ecoregions protection targets for post-2020 biodiversity frameworks.  相似文献   

12.
Marine-protected areas (MPAs) are vital to marine conservation, but their coverage and distribution is insufficient to address declines in global biodiversity and fisheries. In response, many countries have committed through the Aichi Target 11 of the Convention on Biological Diversity to conserve 10% of the marine environment through ecologically representative and equitably managed MPAs by 2020. The rush to fulfill this commitment has raised concerns on how increasing MPA coverage will affect other elements of Target 11, including representation and equity. We examined a Philippines case study to assess and compare 3 MPA planning approaches for biodiversity representation and equitable distribution of costs to small-scale fishers. In the opportunistic approach, MPAs were identified and supported by coastal communities. The donor-assisted approach used local knowledge to select MPAs through a national-scale and donor-assisted conservation project. The systematic conservation planning approach identified MPA locations with the spatial prioritization software Marxan with Zones to achieve biodiversity objectives with minimal costs to fishers. We collected spatial data on biodiversity and fisheries features and performed a gap analysis to evaluate MPAs derived from different approaches. We assessed representation based on the proportion of biodiversity features conserved in MPAs and distribution equity by the distribution of opportunity costs (fishing areas lost in MPAs) among fisher stakeholder groups. The opportunistic approach did not ineffectively represent biodiversity and resulted in inequitable costs to fishers. The donor-assisted approach affected fishers disproportionately but provided near-optimal regional representation. Only the systematic approach achieved all representation targets with minimal and equitable costs to fishers. Our results demonstrate the utility of systematic conservation planning to address key elements of Target 11 and highlight opportunities (e.g., integration of local and scientific knowledge can address representation and equity concerns) and pitfalls (e.g., insufficient stakeholder considerations can exacerbate social inequalities) for planning MPAs in similar contexts.  相似文献   

13.
Irreplaceability is a concept used to describe how close a site is to being essential for achieving conservation targets. Current methods for measuring irreplaceability are based on representative combinations of sites, giving them an extrinsic nature and exponential computational requirements. Surrogate measures based on efficiency (complementarity) are often used as alternatives, but they were never intended for this purpose and do not measure irreplaceability. Current approaches used to estimate irreplaceability have key limitations. Some of these are a result of the tools used, but some are due to the nature of the current definition of irreplaceability. For irreplaceability to be stable and useful for conservation purposes and to resolve limitations, irreplaceability measures should adhere to five axioms; baseline coherence, monotonic responsiveness, proportional responsiveness, intrinsic stability, and bounded outputs. We designed a robust method for measuring a site's proximity to irreplaceability that adheres to these requirements and used it to develop the first systematic global map of irreplaceability based on data for terrestrial vertebrates (n = 29,837 species, >1 million grid cells). At least 3.5% of land surface was highly irreplaceable, and 47.6% of highly irreplaceable cells were contained in 12 countries. More generous thresholds of irreplaceability flag greater portions of land surface that would still be realistic to protect under current global objectives. Irreplaceable sites should form a critical component of any global conservation plan and should be part of the UN Convention on Biological Diversity's post2020 Global Biodiversity Framework strategy, forming part of the 30% protection by 2030 target that is gaining support. The reliable identification of irreplaceable sites will be crucial to halting extinctions.  相似文献   

14.
Marine protected areas (MPAs) are the preferred tool for preventing marine biodiversity loss, as reflected in international protected area targets. Although the area covered by MPAs is expanding, there is a concern that opposition from resource users is driving them into already low-use locations, whereas high-pressure areas remain unprotected, which has serious implications for biodiversity conservation. We tested the spatial relationships between different human-induced pressures on marine biodiversity and global MPAs. We used global, modeled pressure data and the World Database on Protected Areas to calculate the levels of 15 different human-induced pressures inside and outside the world's MPAs. We fitted binomial generalized linear models to the data to determine whether each pressure had a positive or negative effect on the likelihood of an area being protected and whether this effect changed with different categories of protection. Pelagic and artisanal fishing, shipping, and introductions of invasive species by ships had a negative relationship with protection, and this relationship persisted under even the least restrictive categories of protection (e.g., protected areas classified as category VI under the International Union for Conservation of Nature, a category that permits sustainable use). In contrast, pressures from dispersed, diffusive sources (e.g., pollution and ocean acidification) had positive relationships with protection. Our results showed that MPAs are systematically established in areas where there is low political opposition, limiting the capacity of existing MPAs to manage key drivers of biodiversity loss. We suggest that conservation efforts focus on biodiversity outcomes and effective reduction of pressures rather than prescribing area-based targets, and that alternative approaches to conservation are needed in areas where protection is not feasible.  相似文献   

15.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   

16.
Biodiversity and human well-being strategies are only as good as the set of ideas people think about. We evaluated value-focused thinking (VFT), a framework that emphasizes creating objectives and strategies that are responsive to the objectives. We performed a proof-of-concept study of VFT with 6 conservation planning teams at a global conservation organization. We developed a package of materials related to VFT, including meeting–session agendas, a virtual facilitation template, facilitator's guide, and evaluation questionnaires. We used these materials to test whether VFT applied in a group setting resulted in high-quality conservation strategies and participant satisfaction and whether our materials were scalable, meaning that someone newly trained in VFT could facilitate planning meetings that resulted in high-quality strategies and participant satisfaction, as compared with an experienced VFT facilitator. Net response indicated positive compelling, feasible, creative, and representative ratings for the conservation strategies per team. Participants indicated satisfaction overall, although satisfaction was greater for objectives than for strategies. Among the participants with previous conservation planning experience, all were at least as satisfied with their VFT strategies compared with previously developed strategies, and none were less satisfied (p = 0.001). Changes in participant satisfaction were not related to facilitator type (experienced or inexperienced with VFT) (p > 0.10). Some participants had a preconceived sense of shared understanding of important values and interests before participating in the study, which VFT strengthened. Our results highlight the advantages of structuring the development and evaluation of conservation planning frameworks around VFT.  相似文献   

17.
The Convention on Biological Diversity (CBD) expects forestry plantations to contribute to biodiversity conservation. A well‐developed understory in forestry plantations might serve as a surrogate habitat for native species and mitigate the negative effect of plantations on species richness. We experimentally tested this hypothesis by removing the understory in Monterey pine (Pinus radiata) plantations in central Chile and assessing changes in species richness and abundance of medium‐sized mammals. Frequency of occurrence of mammals, including kodkods (Leopardus guigna), culpeo foxes (Pseudalopex culpaeus), lesser grisons (Conepatus chinga), and Southern pudu deer (Pudu puda), was low in forest stands with little to no understory relative to stands with well‐developed undergrowth vegetation. After removing the understory, their frequency of occurrence decreased significantly, whereas in control stands, where understory was not removed, their frequency did not change. This result strongly supports the idea that facilitating the development of undergrowth vegetation may turn forestry stands into secondary habitats as opposed to their containing no habitat for native mammals. This forestry practice could contribute to conservation of biological diversity as it pertains to CBD targets. Proporcionando Hábitat para Mamíferos Nativos Mediante el Mejoramiento del Sotobosque en Plantaciones Forestales  相似文献   

18.
Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.  相似文献   

19.
Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected‐area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant‐cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility.  相似文献   

20.
Abstract: Quantifying the extent to which existing reserves meet conservation objectives and identifying gaps in coverage are vital to developing systematic protected‐area networks. Despite widespread recognition of the Philippines as a global priority for marine conservation, limited work has been undertaken to evaluate the conservation effectiveness of existing marine protected areas (MPAs). Targets for MPA coverage in the Philippines have been specified in the 1998 Fisheries Code legislation, which calls for 15% of coastal municipal waters (within 15 km of the coastline) to be protected within no‐take MPAs, and the Philippine Marine Sanctuary Strategy (2004), which aims to protect 10% of coral reef area in no‐take MPAs by 2020. We used a newly compiled database of nearly 1000 MPAs to measure progress toward these targets. We evaluated conservation effectiveness of MPAs in two ways. First, we determined the degree to which marine bioregions and conservation priority areas are represented within existing MPAs. Second, we assessed the size and spacing patterns of reserves in terms of best‐practice recommendations. We found that the current extent and distribution of MPAs does not adequately represent biodiversity. At present just 0.5% of municipal waters and 2.7–3.4% of coral reef area in the Philippines are protected in no‐take MPAs. Moreover, 85% of no‐take area is in just two sites; 90% of MPAs are <1 km2. Nevertheless, distances between existing MPAs should ensure larval connectivity between them, providing opportunities to develop regional‐scale MPA networks. Despite the considerable success of community‐based approaches to MPA implementation in the Philippines, this strategy will not be sufficient to meet conservation targets, even under a best‐case scenario for future MPA establishment. We recommend that implementation of community‐based MPAs be supplemented by designation of additional large no‐take areas specifically located to address conservation targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号