首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight conventions make up the biodiversity cluster of multilateral environmental agreements (MEAs) that provide the critical international legal framework for the conservation and sustainable use of nature. However, concerns about the rate of implementation of the conventions at the national level have triggered discussions about the effectiveness of these MEAs in halting the loss of biodiversity. Two main concerns have emerged: lack of capacity and resources and lack of coherence in implementing multiple conventions. We focused on the latter and considered the mechanisms by which international conventions are translated into national policy. Specifically, we examined how the Strategic Plan for Biodiversity 2011–2020 and the associated Aichi Biodiversity Targets have functioned as a unifying grand plan for biodiversity conservation. This strategic plan has been used to coordinate and align targets to promote and enable more effective implementation across all biodiversity-related conventions. Results of a survey of 139 key stakeholders from 88 countries suggests streamlining across ministries and agencies, improved coordination mechanisms with all relevant stakeholders, and better knowledge sharing between conventions could improve cooperation among biodiversity-related conventions. The roadmap for improving synergies among conventions agreed to at the 13th Convention on Biological Diversity's Conference of Parties in 2016 includes actions such as mechanisms to avoid duplication in national reporting and monitoring on conventions and capacity building related to information and knowledge sharing. We suggest the scientific community can actively engage and contribute to the policy process by establishing a science-policy platform to address knowledge gaps; improving data gathering, reporting, and monitoring; developing indicators that adequately support implementation of national plans and strategies; and providing evidence-based recommendations to policy makers. The latter will be particularly important as 2020 approaches and work to develop a new biodiversity agenda for the next decade is beginning.  相似文献   

2.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   

3.
During 2021, Parties to the Convention on Biological Diversity (CBD) are expected to meet in Kunming, China, to agree on a new global biodiversity framework aimed at halting and reversing biodiversity loss, encouraging the sustainable use of biodiversity, and ensuring the equitable sharing of its benefits. As the post-2020 global biodiversity framework evolves, parties to the convention are being exposed to a range of perspectives on the conservation and sustainable use of biodiversity, relating to the future framework as a whole or to aspects of it. Area-based conservation measures are one such aspect, and there are diverse perspectives on how new targets might be framed in relation to these measures. These perspectives represent different outlooks on the relationship between human and nonhuman life on Earth. However, in most cases there is a lack of clarity on how they would be implemented in practice, the implications this would have for biodiversity and human well-being, and how they would contribute to achieving the 2050 Vision for Biodiversity of “living in harmony with nature.” We sought to clarify these issues by summarizing some of these perspectives in relation to the future of area-based biodiversity conservation. We identified these perspectives through a review of the literature and expert consultation workshops and compiled them into 4 main groups: Aichi+, ambitious area-based conservation perspectives, new conservation, and whole-earth conservation. We found that although the perspectives Aichi+ and whole earth are in some cases at odds with one another, they also have commonalities, and all perspectives have elements that can contribute to developing and implementing the post-2020 global biodiversity framework and achieving the longer term CBD 2050 Vision.  相似文献   

4.
Comprehensive biodiversity assessments play an essential role in strengthening global and national conservation strategies. The recently announced first U.S. National Nature Assessment (NNA) provides an unparalleled opportunity to comprehensively review status and trends of biodiversity at all levels. This broad context can help in the coordination of actions to conserve individual species and ecosystems. The scientific assessments that informed the Kunming–Montreal Global Biodiversity Framework adopted at the 2022 Convention on Biological Diversity (CBD) conference of parties provide models for synthesizing information on trends at multiple levels of biodiversity, including decline in abundance and distribution of species, loss of populations and genetic diversity, and degradation and loss of ecosystems and their services. The assessments then relate these trends to data on drivers of biodiversity loss and pathways to their mitigation. The U.S. NNA can augment such global analyses and avoid the pitfalls encountered by previous U.S. efforts by ensuring policy-relevant design, data accessibility, and inclusivity in process and product and by incorporating spatial data relevant to national and subnational audiences. Although the United States is not formally a CBD party, an effective NNA should take full advantage of the global context by including indicators adopted at the 2022 meeting and incorporating an independent review mechanism that supports periodic stocktaking and ratcheting up of ambition in response to identified shortfalls in stemming biodiversity loss. The challenges to design of an effective U.S. assessment are relevant globally as nations develop assessments and reporting to support the new global biodiversity framework's targets. By considering and incorporating the diverse ways in which society values and benefits from nature, such assessments can help bridge the gap between research and conservation practice and communicate the extent of the biodiversity crisis to the public, fostering broad-based support for transformative change in humanity's relationship to the natural world.  相似文献   

5.
The first target of the Convention for Biological Diversity (Aichi target 1) was to increase public awareness of the values of biodiversity and actions needed to conserve it—a key prerequisite for other conservation targets. Monitoring success in achieving this target at a global scale has been difficult; however, increased digitization of human life in recent decades has made it easier to measure people's interests at an unprecedented scale and allows for a more comprehensive evaluation of Aichi target 1 than previously attempted. We used Google search volume data for over a thousand search terms related to different aspects of biodiversity and conservation to evaluate global interest in biodiversity and its conservation. We also investigated the correlation of interest in biodiversity and conservation across countries to variables related to biodiversity, economy, demography, research, education, internet use, and presence of environmental organizations. From 2013 to 2020, global searches for biodiversity components increased, driven mostly by searches for charismatic fauna (59% of searches were for mammal species). Searches for conservation actions, driven mostly by searches for national parks, decreased since 2019, likely due to the COVID-19 pandemic. Economic inequality was negatively correlated with interest in biodiversity and conservation, whereas purchasing power was indirectly positively correlated with higher levels of education and research. Our results suggest partial success toward achieving Aichi target 1 in that interest in biodiversity increased widely, but not for conservation. We suggest that increased outreach and education efforts aimed at neglected aspects of biodiversity and conservation are still needed. Popular topics in biodiversity and conservation could be leveraged to increase awareness of other topics with attention to local socioeconomic contexts.  相似文献   

6.
Marine protected areas (MPAs) are the preferred tool for preventing marine biodiversity loss, as reflected in international protected area targets. Although the area covered by MPAs is expanding, there is a concern that opposition from resource users is driving them into already low-use locations, whereas high-pressure areas remain unprotected, which has serious implications for biodiversity conservation. We tested the spatial relationships between different human-induced pressures on marine biodiversity and global MPAs. We used global, modeled pressure data and the World Database on Protected Areas to calculate the levels of 15 different human-induced pressures inside and outside the world's MPAs. We fitted binomial generalized linear models to the data to determine whether each pressure had a positive or negative effect on the likelihood of an area being protected and whether this effect changed with different categories of protection. Pelagic and artisanal fishing, shipping, and introductions of invasive species by ships had a negative relationship with protection, and this relationship persisted under even the least restrictive categories of protection (e.g., protected areas classified as category VI under the International Union for Conservation of Nature, a category that permits sustainable use). In contrast, pressures from dispersed, diffusive sources (e.g., pollution and ocean acidification) had positive relationships with protection. Our results showed that MPAs are systematically established in areas where there is low political opposition, limiting the capacity of existing MPAs to manage key drivers of biodiversity loss. We suggest that conservation efforts focus on biodiversity outcomes and effective reduction of pressures rather than prescribing area-based targets, and that alternative approaches to conservation are needed in areas where protection is not feasible.  相似文献   

7.
To inform governmental discussions on the nature of a revised Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD), we reviewed the relevant literature and assessed the framing of the 20 Aichi Biodiversity Targets in the current strategic plan. We asked international experts from nongovernmental organizations, academia, government agencies, international organizations, research institutes, and the CBD to score the Aichi Targets and their constituent elements against a set of specific, measurable, ambitious, realistic, unambiguous, scalable, and comprehensive criteria (SMART based, excluding time bound because all targets are bound to 2015 or 2020). We then investigated the relationship between these expert scores and reported progress toward the target elements by using the findings from 2 global progress assessments (Global Biodiversity Outlook and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). We analyzed the data with ordinal logistic regressions. We found significant positive relationships (p < 0.05) between progress and the extent to which the target elements were perceived to be measurable, realistic, unambiguous, and scalable. There was some evidence of a relationship between progress and specificity of the target elements, but no relationship between progress and ambition. We are the first to show associations between progress and the extent to which the Aichi Targets meet certain SMART criteria. As negotiations around the post-2020 biodiversity framework proceed, decision makers should strive to ensure that new or revised targets are effectively structured and clearly worded to allow the translation of targets into actionable policies that can be successfully implemented nationally, regionally, and globally.  相似文献   

8.
At the global scale, biodiversity indicators are typically used to monitor general trends, but are rarely implemented with specific purpose or linked directly to decision making. Some indicators are better suited to predicting future change, others are more appropriate for evaluating past actions, but this is seldom made explicit. We developed a conceptual model for assigning biodiversity indicators to appropriate functions based on a common approach used in economics. Using the model, indicators can be classified as leading (indicators that change before the subject of interest, informing preventative actions), coincident (indicators that measure the subject of interest), or lagging (indicators that change after the subject of interest has changed and thus can be used to evaluate past actions). We classified indicators based on ecological theory on biodiversity response times and management objectives in 2 case studies: global species extinction and marine ecosystem collapse. For global species extinctions, indicators of abundance (e.g., the Living Planet Index or biodiversity intactness index) were most likely to respond first, as leading indicators that inform preventative action, while extinction indicators were expected to respond slowly, acting as lagging indicators flagging the need for evaluation. For marine ecosystem collapse, indicators of direct responses to fishing were expected to be leading, while those measuring ecosystem collapse could be lagging. Classification defines an active role for indicators within the policy cycle, creates an explicit link to preventative decision-making, and supports preventative action.  相似文献   

9.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   

10.
Zoos and aquariums are increasingly incorporating conservation education into their mission statements and visitor experiences to address global biodiversity loss. To advance knowledge and practice in the field, research is being conducted to evaluate the effect of zoo conservation-education experiences on visitor psychosocial outcomes (e.g., knowledge, attitude, emotions, motivations, behavior). Following recent discussions among scholars and practitioners concerning logistical and methodological challenges that likely undermine the conclusions of such research, we identified and reviewed the methods and reporting practices in peer-reviewed articles published in English from May 1998 to June 2016 that focused on adult visitor samples (47 articles, 48 studies). We examined elements of internal, external, construct, and statistical conclusion validity. Methodological quality of quantitative methods and reporting practices was determined using the Effective Public Health Practice Project Quality Assessment Tool. Each study was coded as either strong (no weak ratings), moderate (1 weak rating), or weak (≥2 weak ratings). The quantitative methods of 83.3% of studies were weak. The remaining 16.7% had methods of moderate quality. Using an existing checklist, we also assessed the quality and rigor of qualitative methods and reporting practices and found that some aspects of these methods were reported more comprehensively than others. For example, 69.6% of articles discussed methods for identifying key themes from the data, whereas only 34.8% reported how data verification was performed. We suggest increased application of intensive longitudinal methods (e.g., daily diary) to strengthen self-reported data, experimental and repeated-measures designs, and mixed-methods approaches. Our findings and recommendations could strengthen and guide the research and evaluation agenda for the field and ultimately enhance the contribution zoos make to global biodiversity conservation.  相似文献   

11.
Marine protected areas (MPAs) are a critical defense against biodiversity loss in the world's oceans, but to realize near-term conservation benefits, they must be established where major threats to biodiversity occur and can be mitigated. We quantified the degree to which MPA establishment has targeted stoppable threats (i.e., threats that can be abated through effectively managed MPAs alone) by combining spatially explicit marine biodiversity threat data in 2008 and 2013 and information on the location and potential of MPAs to halt threats. We calculated an impact metric to determine whether countries are protecting proportionally more high- or low-threat ecoregions and compared observed values with random protected-area allocation. We found that protection covered <2% of ecoregions in national waters with high levels of abatable threat in 2013, which is ∼59% less protection in high-threat areas than if MPAs had been placed randomly. Relatively low-threat ecoregions had 6.3 times more strict protection (International Union for Conservation of Nature categories I–II) than high-threat ecoregions. Thirty-one ecoregions had high levels of stoppable threat but very low protection, which presents opportunities for MPAs to yield more significant near-term conservation benefits. The extent of the global MPA estate has increased, but the establishment of MPAs where they can reduce threats that are driving biodiversity loss is now urgently needed.  相似文献   

12.
Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.  相似文献   

13.
Marine-protected areas (MPAs) are vital to marine conservation, but their coverage and distribution is insufficient to address declines in global biodiversity and fisheries. In response, many countries have committed through the Aichi Target 11 of the Convention on Biological Diversity to conserve 10% of the marine environment through ecologically representative and equitably managed MPAs by 2020. The rush to fulfill this commitment has raised concerns on how increasing MPA coverage will affect other elements of Target 11, including representation and equity. We examined a Philippines case study to assess and compare 3 MPA planning approaches for biodiversity representation and equitable distribution of costs to small-scale fishers. In the opportunistic approach, MPAs were identified and supported by coastal communities. The donor-assisted approach used local knowledge to select MPAs through a national-scale and donor-assisted conservation project. The systematic conservation planning approach identified MPA locations with the spatial prioritization software Marxan with Zones to achieve biodiversity objectives with minimal costs to fishers. We collected spatial data on biodiversity and fisheries features and performed a gap analysis to evaluate MPAs derived from different approaches. We assessed representation based on the proportion of biodiversity features conserved in MPAs and distribution equity by the distribution of opportunity costs (fishing areas lost in MPAs) among fisher stakeholder groups. The opportunistic approach did not ineffectively represent biodiversity and resulted in inequitable costs to fishers. The donor-assisted approach affected fishers disproportionately but provided near-optimal regional representation. Only the systematic approach achieved all representation targets with minimal and equitable costs to fishers. Our results demonstrate the utility of systematic conservation planning to address key elements of Target 11 and highlight opportunities (e.g., integration of local and scientific knowledge can address representation and equity concerns) and pitfalls (e.g., insufficient stakeholder considerations can exacerbate social inequalities) for planning MPAs in similar contexts.  相似文献   

14.
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species’ range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species’ distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.  相似文献   

15.
Although threats to global biodiversity are well known, slowing current rates of biodiversity loss remains a challenge. The Aichi targets set out 20 goals on which the international community should act to alleviate biodiversity decline, 1 of which (Target 1) aims to raise public awareness of the importance of biodiversity. Although conventional indicators for Target 1 are of low spatial and temporal coverage, conservation culturomics metrics show how biodiversity awareness can be quantified at the global scale. Following methods used for the Living Planet Index, we devised a species awareness index (SAI) to measure change in species awareness based on Wikipedia views. We calculated this index at the page level for 41,197 species listed by the International Union for Conservation of Nature (IUCN) across 10 Wikipedia languages and >2 billion views from 1 July 2015 to 30 March 2020. Bootstrapped indices for the page-level SAI showed that overall awareness of biodiversity increased marginally over time, although there were differences among taxonomic classes and languages. Among taxonomic classes, overall awareness increased fastest for reptiles and slowest for amphibians. Among languages, overall species awareness increased fastest for Japanese and slowest for Chinese and German users. Although awareness of species as a whole increased and was significantly higher for traded species, from January 2016 through January 2020, change in awareness appeared not to be strongly related to whether the species is traded or is a pollinator. As a data source for public biodiversity awareness, the SAI could be integrated into the Conservation International Biodiversity Engagement Indicator.  相似文献   

16.
The unlimited economic growth that fuels capitalism's metabolism has profoundly transformed a large portion of Earth. The resulting environmental destruction has led to an unprecedented rate of biodiversity loss. Following large-scale losses of habitats and species, it was recognized that biodiversity is crucial to maintaining functional ecosystems. We sought to continue the debate on the contradictions between economic growth and biodiversity in the conservation science literature and thus invite scholars to engage in reversing the biodiversity crisis through acknowledging the impacts of economic growth. In the 1970s, a global agenda was set to develop different milestones related to sustainable development, including green–blue economic growth, which despite not specifically addressing biodiversity reinforced the idea that economic development based on profit is compatible with the planet's ecology. Only after biodiversity loss captured the attention of environmental sciences researchers in the early 2000s was a global biodiversity agenda implemented. The agenda highlights biodiversity conservation as a major international challenge and recognizes that the main drivers of biodiversity loss derive from economic activities. The post-2000 biodiversity agendas, including the 2030 Agenda for Sustainable Development and the post-2020 Convention on Biological Diversity Global Strategy Framework, do not consider the negative impacts of growth-oriented strategies on biodiversity. As a result, global biodiversity conservation priorities are governed by the economic value of biodiversity and its assumed contribution to people's welfare. A large body of empirical evidence shows that unlimited economic growth is the main driver of biodiversity loss in the Anthropocene; thus, we strongly argue for sustainable degrowth and a fundamental shift in societal values. An equitable downscaling of the physical economy can improve ecological conditions, thus reducing biodiversity loss and consequently enhancing human well-being.  相似文献   

17.
Global targets for the percentage area of land protected, such as 30% by 2030, have gained increasing prominence, but both their scientific basis and likely effectiveness have been questioned. As with emissions-reduction targets based on desired climate outcomes, percentage-protected targets combine values and science by estimating the area over which conservation actions are required to help achieve desired biodiversity outcomes. Protected areas are essential for achieving many biodiversity targets, in part because many species are highly sensitive to human-associated disturbance. However, because the contribution of protected areas to biodiversity outcomes is contingent on their location, management, governance, threats, and what occurs across the broader landscape matrix, global percentage-protected targets are unavoidably empirical generalizations of ecological patterns and processes across diverse geographies. Percentage-protected targets are insufficient in isolation but can complement other actions and contribute to biodiversity outcomes within a framework that balances accuracy and pragmatism in a global context characterized by imperfect biodiversity data. Ideally, percentage-protected targets serve as anchors that strengthen comprehensive national biodiversity strategies by communicating the level of ambition necessary to reverse current trends of biodiversity loss. If such targets are to fulfill this role within the complex societal process by which both values and science impel conservation actions, conservation scientists must clearly communicate the nature of the evidence base supporting percentage-protected targets and how protected areas can function within a broader landscape managed for sustainable coexistence between people and nature. A new paradigm for protected and conserved areas recognizes that national coordination, incentives, and monitoring should support rather than undermine diverse locally led conservation initiatives. However, the definition of a conserved area must retain a strong focus on biodiversity to remain consistent with the evidence base from which percentage-protected targets were originally derived.  相似文献   

18.
19.
The Convention on Biological Diversity's (CBD) strategic plan will expire in 2020, but biodiversity loss is ongoing. Scientists call for more ambitious targets in the next agreement. The nature-needs-half movement, for example, has advocated conserving half of Earth to solve the biodiversity crisis, which has been translated to protecting 50% of each ecoregion. We evaluated current protection levels of ecoregions in the territory of one of the CBD's signatories, the European Union (EU). We also explored the possible enlargement of the Natura 2000 network to implement 30% or 50% ecoregion coverage in the EU member states’ protected area (PA) network. Based on the most recent land-use data, we examined whether ecoregions have enough natural area left to reach such high coverage targets. We used a spatially explicit mixed integer programing model to estimate the least-cost expansion of the PA network based on 3 scenarios that put different emphasis on total conservation cost, ecological representation of ecosystems, or emphasize an equal share of the burden among member states. To realize 30% and 50% ecoregion coverage, the EU would need to add 6.6% and 24.2%, respectively, of its terrestrial area to its PA network. For all 3 scenarios, the EU would need to designate most recommended new PAs in seminatural forests and other semi- or natural ecosystems. Because 15 ecoregions did not have enough natural area left to implement the ecoregion-coverage targets, some member states would also need to establish new PAs on productive land, allocating the largest share to arable land. Thirty percent ecoregion coverage was met by protecting remaining natural areas in all ecoregions except 3, where productive land would also need to be included. Our results support discussions of higher ecoregions protection targets for post-2020 biodiversity frameworks.  相似文献   

20.
To help stem the continuing decline of biodiversity, effective transfer of technology from resource‐rich to biodiversity‐rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource‐rich to biodiversity‐rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one‐to‐many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure‐state‐response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in‐depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号