首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

2.
This article presents an analysis of the projected performance of urban residential rainwater harvesting systems in the United States (U.S.). The objectives are to quantify for 23 cities in seven climatic regions (1) water supply provided from rainwater harvested at a residential parcel and (2) stormwater runoff reduction from a residential drainage catchment. Water‐saving efficiency is determined using a water‐balance approach applied at a daily time step for a range of rainwater cistern sizes. The results show that performance is a function of cistern size and climatic pattern. A single rain barrel (190 l [50 gal]) installed at a residential parcel is able to provide approximately 50% water‐saving efficiency for the nonpotable indoor water demand scenario in cities of the East Coast, Southeast, Midwest, and Pacific Northwest, but <30% water‐saving efficiency in cities of the Mountain West, Southwest, and most of California. Stormwater management benefits are quantified using the U.S. Environmental Protection Agency Storm Water Management Model. The results indicate that rainwater harvesting can reduce stormwater runoff volume up to 20% in semiarid regions, and less in regions receiving greater rainfall amounts for a long‐term simulation. Overall, the results suggest that U.S. cities and individual residents can benefit from implementing rainwater harvesting as a stormwater control measure and as an alternative source of water.  相似文献   

3.
This study uses a developed plan coding protocol in evaluating the quality of 76 comprehensive plans to examine whether local comprehensive plans have adequately integrated the concepts of sustainable stormwater management. The Chesapeake Bay watershed was chosen for the investigation because degraded stormwater runoff from nearby urban and suburban jurisdictions have critically polluted the watershed. The findings indicate that the majority of local governments have not sufficiently incorporated the sustainable stormwater management principles into their comprehensive plans. Five plan components (factual basis, goals and objectives, inter-organizational cooperation, policies, tools and strategies, and implementation) appear weak in realizing the concepts. The current study concludes by providing policy implications and recommendations to increase awareness and understanding of sustainable stormwater management concepts and to produce better implementation plans that integrate stormwater, ecosystem, and environmental planning comprehensively.  相似文献   

4.
Urban/rural stormwater quantity modelling has been well-researched and has achieved sufficient accuracy benchmark. However, modelling stormwater runoff quality (i.e. pollutants transport associated with stormwater) are relatively difficult and largely depends on catchment characteristics/land-uses; these can be estimated with acceptable accuracy provided pollutants transport equations are established through extensive field measurements. To ensure ecologically sustainable development, several stormwater treatment systems have been proposed. Model of Urban Stormwater Improvement Conceptualisation (MUSIC) developed and widely used in Australia, estimates pollutant transport from catchments and stormwater treatment through different systems. This paper presents a study on the accuracy of MUSIC estimations for different stormwater treatment options used in Australia and abroad. Data on several field measurements on different constructed stormwater treatment systems (bioretention, grass swale and porus pavement) in Australia, Sweden, New Zealand and Scotland was collected from literatures. The experimental results were compared with MUSIC's estimations under similar conditions. In general, it has been found that MUSIC can simulate flow conditions with good accuracy, however MUSIC's predictions on the removal efficiencies of Total Suspended Solids (TSS), Total Phosphorus (TP) and Total Nitrogen (TN) are varying. Potential reasons for these discrepancies are discussed. Also, a summary table showing MUSIC's overall capability on simulating stormwater treatment efficiencies for different treatment measures has been presented.  相似文献   

5.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

6.
With the use of water approaching, and in some cases exceeding, the limits of sustainability in many locations, there is an increasing recognition of the need to utilise stormwater for non-potable requirements, thus reducing the demand on potable sources. This paper presents a review of Australian stormwater treatment and recycling practices as well as a discussion of key lessons and identified knowledge gaps. Where possible, recommendations for overcoming these knowledge gaps are given. The review of existing stormwater recycling systems focussed primarily on the recycling of general urban runoff (runoff generated from all urban surfaces) for non-potable purposes. Regulations and guidelines specific to stormwater recycling need to be developed to facilitate effective design of such systems, and to minimise risks of failure. There is a clear need for the development of innovative techniques for the collection, treatment and storage of stormwater. Existing stormwater recycling practice is far ahead of research, in that there are no technologies designed specifically for stormwater recycling. Instead, technologies designed for general stormwater pollution control are frequently utilised, which do not guarantee the necessary reliability of treatment. Performance modelling for evaluation purposes also needs further research, so that industry can objectively assess alternative approaches. Just as many aspects of these issues may have impeded adoption of stormwater, another impediment to adoption has been the lack of a practical and widely accepted method for assessing the many financial, social and ecological costs and benefits of stormwater recycling projects against traditional alternatives. Such triple-bottom-line assessment methodologies need to be trialled on stormwater recycling projects. If the costs and benefits of recycling systems can be shown to compare favourably with the costs and benefits of conventional practices this will provide an incentive to overcome other obstacles to widespread adoption of stormwater recycling.  相似文献   

7.
Urban stormwater run-off is a threat to stream ecosystems. New approaches to stormwater management aim to protect urban streams from such impacts, by retaining, treating and using stormwater at its source. As up to ~50% of runoff from urban surfaces comes from private property, fostering stormwater retention requires effective householder engagement. We evaluated householder participation in the Little Stringybark Creek project, a stormwater retrofit programme aimed at waterway protection, using qualitative enquiry through formal and informal interviews to identify factors that influenced participation. Participation was governed by multiple factors, with financial incentives and personal co-benefits of tanks primary motivators, while process complexity and distrust were primary barriers. Results suggest an approach combining education to encourage review of subjective norms and attitudes, with incentives to mitigate behavioural controls can transform public behaviour towards sustainable stormwater management.  相似文献   

8.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

9.
Metropolitan areas located in arid and semiarid environments are rapidly expanding onto the piedmonts of nearby desert mountains. Hazards to urban development are posed by the complex fluvial systems that characterize these environments, yet no generally accepted methodology exists for evaluating flood hazards on desert piedmonts. An approach to flood hazard assessment is presented that involves the hydrogeomorphic analysis of land surfaces. Five flood hazard zones are identified for an area in central Arizona by analyzing the spatial variation of landforms and their associated fluvial processes. The methodology is applicable to similar environments elsewhere because it is based on the identification of forms and processes common to arid regions. The information provided by the analysis can form the basis for a comprehensive flood hazard management plan.  相似文献   

10.
Rainwater harvesting (RWH) has traditionally been implemented in areas with (semi) arid climates or limited access to potable water supplies; however, recent droughts in the humid southeastern United States have led to increased implementation of RWH systems. The objectives of this study were twofold: (1) present usage characteristics and performance results for four RWH systems installed in humid North Carolina (NC) as compared with systems located in arid/semiarid regions and (2) identify system benefits and modifications that could help improve the performance of RWH systems installed in humid regions of the world. For this study four RWH systems were installed in NC. Their usage was monitored for at least one year and compared with similar studies. Results revealed that dedicated water uses and usage characteristics for RWH systems in NC differed from those previously reported in the literature. Two of the systems studied met 100 and 61% of the potable water demand with designated uses of animal kennel flushing and greenhouse irrigation, respectively. The designated uses yielding the greatest potable water replacement were often seasonal or periodic, thus necessitating the need for identifying and implementing secondary objectives for these systems, namely, stormwater management. Otherwise, the expense and effort required to implement RWH systems in humid areas will most likely preclude their use.  相似文献   

11.
Sustainability is a concept that has been widely embraced both politically and intellectually but has not been addressed in terms of practical application. In most resource sectors, the features of a sustainable future remain unclear and there are few examples that give practical expression to sustainability. This is especially true in the case of water resources management which has been conspicuous in its absence from the majority of the literature. This paper attempts to address this deficiency on two counts. First, it provides a discussion of sustainability and the application of the concept to the management of water resources. Second, the paper illustrates how the concept can be utilized for the management and planning of urban stormwater. The paper concludes by offering research opportunities to investigate the feasibility of adopting natural channel design and artificial wetlands for sustainable stormwater management.  相似文献   

12.
One of the most important endemic tree species of Chile and at the same time one of the most endangered ones is Araucaria araucana (Mol.) C. Koch, the monkey‐puzzle tree. It grows in the Andes Mountains, homeland of the indigenous Mapuche Pewenche people who depend on this tree. This paper is based on field research that investigated the ecological knowledge, uses and management of the Araucaria araucana forest by indigenous Mapuche Pewenche people based on the socio‐cultural, spiritual and ecological relationships they have with the Araucaria forest, to find out how indigenous people and their knowledge could contribute to sustainable Araucaria forest management. A Mapuche Pewenche community located in the IX region of Chile contributed to this study. Based on the analyses this paper illustrates the nature of indigenous ecological knowledge of Araucaria araucana on the one hand, and its utility in native forest management on the other. The research shows that the Mapuche Pewenche hold ecological knowledge and conduct practices to manage their Araucaria forest in a balanced way. They conserve and use forest biodiversity at one and the same time. This paper provides recommendations for sustainable Araucaria forest management and conservation strategies ex‐situ and in‐situ incorporating indigenous knowledge and scientific knowledge and for promoting a collaborative natural resources management.  相似文献   

13.
It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative “integrated urban stormwater management” techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.  相似文献   

14.
The contradiction between China's economic development, its need for resources and the protection of the environment is ctitical. Scarce water resources have resulted in a considerable bottleneck restricting the economic development of water-deficient areas. An objective evaluation of the decoupling state of water consumption and economic development has become an important indicator of regional economic sustainable development. Based on panel data from 2000 to 2017 for six provinces in the arid and semiarid regions of Northwest China, the Logarithmic Mean Divisia Index method is employed to decompose the factors of the decoupling index and establish a decoupling relationship model between water consumption and economic development. The reasons that affect the decoupling state of water resource utilization and economic development are herein discussed, and the stability of the decoupling trend is analysed. Based on the overall regional trend, the decoupling state of the arid and semiarid regions in Northwest China improved from weak to strong, but the high decoupling stability index varied among the provinces. The intensity and structure were promotional factors for decoupling water consumption and economic development, and the contribution rate of the intensity factor was higher than that of the structure factor. Income and population were inhibiting factors for decoupling water consumption and economic development, and the contribution rate of the income factor was higher than that of the population factor. Based on these results, corresponding policy recommendations are provided.  相似文献   

15.
The development of Watershed Management Plans (WMPs) in urban areas aids municipalities in allocating resources, engaging the public and stakeholders, addressing water quality regulations, and mitigating issues related to stormwater runoff and flooding. In this study, 124 urban WMPs across the United States were reviewed to characterize historic approaches and identify emerging trends in watershed planning. Planning methods and tools were qualitatively evaluated, followed by statistical analyses of a subset of 63 WMPs to identify relationships between planning factors. Plans developed by a municipality or consultant were associated with more occurrences of hydrologic modeling and site‐specific recommendations, and fewer occurrences of characterizing social watershed factors, than plans authored by agencies, organizations, or universities. WMPs in the past decade exhibited greater frequency in the use of pollutant load models and spatially explicit hydrologic and hydraulic models. Project prioritization was found to increasingly focus on feasibility to implement proposed strategies. More recent plans additionally exhibited greater consideration for water quality, ecological health, and public participation. Innovation in planning methods and consideration of future watershed conditions are primary areas that were found to be deficient in the study WMPs, although analysis methods and tools continue to improve in the wake of advancing technology and data availability.  相似文献   

16.
This study examines precipitation accumulation and intensity trends across a region in southwest Saudi Arabia characterized by distinct seasonal weather patterns and mountainous terrain. The region is an example of an arid/semiarid area faced with maintaining sustainable water resources with a growing population. Annual and seasonal trends in precipitation amount were examined from 29 rain gages divided among four geographically unique regions from 1945/1946 to 2009. Two of the regions displayed significantly declining annual trends over the time series using a Mann‐Kendall test modified for autocorrelation (α < 0.05). Seasonal analysis revealed insignificant declining trends in at least two of the regions during each season. The largest and most consistent declining trends occurred during wintertime where all regions experienced negative trends. Several intensity metrics were examined in the study area from four additional stations containing daily data from 1985 to 2011. Intensity metrics included total precipitation, wet day count, simple intensity index, maximum daily annual rainfall, and upper/lower precipitation distribution changes. In general, no coherent trends were found among the daily stations suggesting precipitation is intensifying across the study area. The work represents the first of its size in the study area, and one of few in the region due to the lack of available long‐term data needed to properly examine precipitation changes.  相似文献   

17.
Low impact development (LID) practices are often applied to compensate for surface imperviousness caused by urban development. These practices can mitigate flood risk by reducing runoff volume and peak flow and by delaying the time to peak flow. To select a suitable LID practice type and its surface area during the preliminary design process, it is necessary to rapidly estimate the hydrologic performance of various LID designs under design storms. This study provides a method and a toolbox for rapid assessment of the hydrologic performance of various LID practices, which can be useful to developers for establishment of preliminary LID designs. The hydrologic performance of three common types of LID practices (i.e., green roofs, bioretention cells, and infiltration trenches) under various design storms is first simulated using the Storm Water Management Model (SWMM). The results are then presented as performance curves on a unit storage basis. Look‐up tables are further developed to assist the comparison and selection of the LID alternatives for various hydrologic performance targets. To facilitate SWMM modeling, a MATLAB toolbox is developed to automate the process of input modification, model simulation, result extraction, and postprocessing. Finally, the sensitivity of the look‐up curves to design storm types and design specifications of bioretention cells is also analyzed, and the assumptions used in the development of these look‐up curves are validated.  相似文献   

18.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   

19.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

20.
The major purpose of this paper is to explore the potential value of benefit–cost evaluation for stormwater quality management decisions at a local level. A preliminary benefit–cost analysis (BCA) screening method is used for maximum extent practicable (MEP) analysis, identifying promising management practices, and identifying societal and economic tradeoffs for local stormwater problems. Ballona Creek, a major urban storm drain in Los Angeles, California, USA, is used to illustrate the practicality of the benefit–cost evaluation. The Ballona Creek example demonstrates the economic limits of stormwater management in an urban region and attests to the value of coordinated basinwide management compared to uncoordinated management by individual landowners. Evaluation results suggest that in urban areas, the benefit of stormwater quality improvements might be far greater if accompanied by comprehensive redesign of drainage networks and neighboring land uses. In this case, benefit–cost analysis is found to be useful for evaluating and understanding stormwater management alternatives despite the uncertainties in characterizing stormwater quality and the effects of stormwater management on improving receiving water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号