首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The aim of this study was to quantify personal exposure and indoor levels of the suspected or known carcinogenic compounds 1,3-butadiene, benzene, formaldehyde and acetaldehyde in a small Swedish town where wood burning for space heating is common. Subjects (wood burners, n = 14), living in homes with daily use of wood-burning appliances were compared with referents (n = 10) living in the same residential area. Personal exposure and stationary measurements indoors and at an ambient site were performed with diffusive samplers for 24 h. In addition, 7 day measurements of 1,3-butadiene and benzene were performed inside and outside the homes. Wood burners had significantly higher median personal exposure to 1,3-butadiene (0.18 microg m(-3)) compared with referents (0.12 microg m(-3)), which was also reflected in the indoor levels. Significantly higher indoor levels of benzene were found in the wood-burning homes (3.0 microg m(-3)) compared with the reference homes (1.5 microg m(-3)). With regard to aldehydes, median levels obtained from personal and indoor measurements were similar although the four most extreme acetaldehyde levels were all found in wood burners. High correlations were found between personal and indoor levels for all substances (r(s) > 0.8). In a linear regression model, type of wood-burning appliance, burning time and number of wood replenishments were significant factors for indoor levels of 1,3-butadiene. Domestic wood burning seems to increase personal exposure to 1,3-butadiene as well as indoor levels of 1,3-butadiene and benzene and possibly also acetaldehyde. The cancer risk from these compounds at exposure to wood smoke is, however, estimated to be low in developed countries.  相似文献   

2.
United States environmental regulations, intended to protect human health, generally fail to address major sources of pollutants that endanger human health. These sources are surprisingly close to us and within our control, such as consumer products and building materials that we use within our homes, workplaces, schools, and other indoor environments. Even though these indoor sources account for nearly 90% of our pollutant exposure, they are virtually unregulated by existing laws. Even pollutant levels found in typical homes, if found outdoors, would often violate federal environmental standards. This article examines the importance of human exposure as a way to understand and reduce effects of pollutants on human health. Results from exposure studies challenge traditional thinking about pollutant hazards, and reveal deficiencies in our patchwork of laws. And results from epidemiological studies, showing increases in exposure-related diseases, underscore the need for new protections. Because we cannot rely solely on regulations to protect us, and because health effects from exposures can develop insidiously, greater efforts are needed to reduce and prevent significant exposures before they occur. Recommendations include the development and use of safer alternatives to common products, public education on ways to reduce exposure, systematic monitoring of human exposure to pollutants, and a precautionary approach in decision-making.  相似文献   

3.
PM(2.5) and VOCs (benzene, toluene, m-p-o-xylenes) concentrations were measured in an urban and a suburban site in Athens, Greece, during the period between April and November 2004. This period, which is considered to be the warmer period in Greece, is characterized by the development of sea-breeze over the Attica Basin. Additionally strong Northern, North-eastern winds called "The Etesians", predominate during the summer months (July-August), acting positively to the dispersion of pollutants. In this campaign, 24 days with sea-breeze development were observed, 15 days with northern winds, 6 days with southern winds while the rest of the days presented no specific wind profile. Maximum concentrations of PM(2.5), VOCs and nitrogen oxides, were detected during the days with sea-breeze, while minimum concentrations during the days with northern winds. Ozone was the only pollutant that appeared to have higher concentrations in the background site and not in the city centre, where benzene presented strong negative correlation with ozone, indicating the photochemical reaction of hydrocarbons that lead to the ozone formation. The BTX ratios were similar for both sites and wind profiles, indicating common sources for those pollutants. T/B ratio ranged in low levels, between 3-5 for site A and 2-5 for site B, suggesting vehicles emissions as the main sources of volatile compounds. Finally, the strong correlations of PM(2.5) and benzene concentrations, between the two sampling sites, indicate that both the city centre and the background site, are affected by the same sources, under common meteorological conditions (sea-breeze, northern winds).  相似文献   

4.
Fine particles (PM2.5) were sampled indoors and outdoors at 40 sampling sites; in ten classrooms in five schools, at ten preschools and 20 non-smoking homes, in three communities in Stockholm, Sweden, during nine 2-week periods. Each sampling site was sampled twice, once during winter and once during spring. The samples were analysed for elemental concentrations using X-ray fluorescence (XRF) spectroscopy. In all locations significantly higher outdoor concentrations were found for elements that are related to long-range transported air masses (S, Ni, Br and Pb), while only Ti was higher indoors in all locations. Similar differences for S, Br and Pb were found in both seasons for homes and schools. In preschools different seasonal patterns were seen for the long-range transported elements S, Br and Pb and the crustal elements Ti, Mn and Fe. The indoor/outdoor ratios for S and Pb suggest an outdoor PM2.5 particle net infiltration of about 0.6 in these buildings. The community located 25 km from the city centre had significantly lower outdoor concentrations of elements of crustal or traffic origin compared with the two central communities, but had similar levels of long-range transported elements. Significant correlations were found between PM2.5 and most elements outdoors (rs = 0.45-0.90). Copper levels were found to correlate well (rs = 0.64-0.91) to the traffic marker NO2 during both winter and spring in all locations. Copper may be a suitable elemental marker for traffic-related aerosols in health studies in areas without other significant outdoor Cu sources.  相似文献   

5.
Both regulated and unregulated air pollutants were detected during an intensive seasonal sampling campaign in a mixed industrial/semi-rural area on the outskirts of Rome, Italy, at two sites located opposite a hospital waste incinerator, downwind according to the direction of the prevailing local winds. Concentrations of pollutants were significantly lower than in urban atmospheres. The composition of particulate organic material indicated a heavy biogenic impact, accompanied by a lower contribution from petroleum-related processes. Both PAH and nitro-PAH group compositions of particulates were used to assess the nature and relative importance of sources. Both sites showed that different and diffuse sources contributed to local pollution with a significant contribution from traffic, proving that the hospital waste incinerator was not the main pollution source in this area. Among unregulated compounds, a series of positional isomers of nitro-PAHs and other organic compounds associated with particulate matter were investigated. In particular, 1- and 3-nitrophenanthrene identification was carried out, and they proved to be the most abundant nitro-PAHs.  相似文献   

6.
In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants.  相似文献   

7.
CO concentrations were measured in five kindergartens, one children's hospital and two homes for aged, practically without indoor sources, all situated in the city centre, for ten random days in winter and ten in summer. The indoor CO concentrations were the result of the distance from and the traffic density in the nearest street, of general pollution level, seasonal differences, day-to-day variations and daily cycle of air pollution, the vicinity of traffic having a dominant influence. Therefore location of institutions for sensitive population groups in old city centres within a block of houses seems to be a suitable solution as far as exposure to CO is concerned.Revised version of a paper presented as poster at the VIth World Congress on Air Quality, Paris 1983.  相似文献   

8.
Many VOC represent hazards to human health through chronic exposure. Recent European and world-wide legislation proposes limit values for ambient concentrations of these compounds. However, very little experimental data exists for true population exposure. In 1996, the European MACBETH initiative set out to measure population exposure to benzene in six European cities. This study details the French contribution to this program. Six campaigns were carried out, each comprising measurements at 100 outdoor sites and the participation of 50 non-smoking volunteers who wore personal samplers and had passive monitors installed in their homes. Iso-concentration maps were drawn for each campaign and the results showed that outdoor concentrations were significantly lower than indoors. Almost 75% of the volunteers were exposed to mean concentrations higher than the limit value of 5µgm3. It is demonstrated that personal exposure levels cannot be deduced simply by combining indoor and outdoor background concentrations. It is also shown that there is need for better knowledge of the contributions to overall exposure of outdoor microenvironments and the authors hope that future European directives will take this into account.  相似文献   

9.
The need to collect data representative of overall urban pollution is all-important in order to monitor the population exposure. High spatial resolution monitoring using diffusive samplers allows studying of the urban pollutant distribution, thus enabling deeper investigation of their generation and diffusion mechanisms. Nevertheless, such a monitoring campaign has a certain cost. In this study we point out how to find the best compromise between the number of necessary measurements and the affordable costs for monitoring campaigns. We also describe an innovative method for the proper design of a fixed urban monitoring network by means of preliminary high spatial resolution campaigns using diffusive samplers. Four European capital cities (Dublin, Madrid, Paris and Rome) were monitored six times, each time for seven days. Benzene, toluene, ethylbenzene, xylenes (BTEX) and NO(2) concentrations were measured at 146 sites in Dublin, 293 in Madrid, 339 in Paris and 290 in Rome. Multiscale grids have been drawn which ranged in mesh size from 500 m to 2 km. The statistical processing of data produced a twofold result: the creation of isoconcentration maps with geostatistical procedures, and an algorithm aimed at locating the minimum number of sampling sites where the fixed monitoring stations should be placed. Average urban levels estimated on the basis of these selected sites differ by less than 8% from those calculated on the whole populations of the sampled points. The aim of this work is to investigate how far the resolution of a monitoring campaign of urban pollution by diffusive sampling can be reduced, thus making the monitoring less expensive in terms of human and financial resources, while preserving the same quality of the results that could be achieved with a higher resolution. We found that there is no significant loss of information when the resolution of the monitoring grid for BTEX is lowered to a mesh size of 1.85 km, that is a sampling site each 3.4 km(2), and that the minimum number of sampling sites to be used is N = 0.29 A, where A is the urban surface to be monitored (in km(2)). As the spatial distribution of NO(2) is less sensitive to the distance from the emission source than that of BTEX, this relationship could be retained as a valid lower limit for the mesh grid size also for NO(2) monitoring.  相似文献   

10.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

11.
Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.  相似文献   

12.
Results of intermittent monitoring of six aromatic hydrocarbons (benzene, toluene, ethyl-benzene, m-xylene, p-xylene and o-xylene), carbon monoxide and oxides of nitrogen over a thirteen year period at a site in central London (Exhibition Road) are presented. Four monitoring regimes were undertaken; namely, 1979, 1982/83, 1986/87 and 1991/92. The summertime daytime mean ambient concentrations of the measured parameters at this site are presented. The reported concentrations show a reduction from 1979 to 1992 by approximately a factor of two, despite national increases in motor fuel consumption and the volume of traffic. Relevant European Community legislation covering emissions from motor-vehicles are outlined and comparisons are made with emissions from motor vehicles predicted from the UK national inventory. The importance of the frequency of measurements was also noted.  相似文献   

13.
Air pollution has assumed gigantic proportion killing almost half a million Asians every year. Urban pollution mainly comprises of emissions from buses, trucks, motorcycle other forms of motorized transport and its supporting activities. As Asia's cities continue to expand the number of vehicles have risen resulting in greater pollution. Fugitive emissions from retail distribution center in urban area constitute a major source. Petrol vapours escape during refueling adding pollutants like benzene, toluene, ethylbenzene and xylene to ambient air. This paper discusses a study on fugitive emissions of Volatile Organic Compounds (VOC) at some refueling station in two metropolitan cities of India, i.e., Mumbai and Delhi. Concentration of VOCs in ambient air at petrol retail distribution center is estimated by using TO-17 method. Concentration of benzene in ambient air in Delhi clearly shows the effect of intervention in use of petroleum and diesel fuel and shift to CNG. Chemical Mass Balance (CMB) model is used to estimate source contributions. At Delhi besides diesel combustion engines, refueling emissions are also major sources. At Mumbai evaporative emissions are found to contribute maximum to Total VOC (TVOC) concentration in ambient air.  相似文献   

14.
The preparation of a new candidate certified reference material (CRM) for trace elements based on the antarctic bivalve Adamussium colbecki(IRMM 813) was carried out by the Istituto Superiore di Sanità(ISS, Rome, Italy) in cooperation with the Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission (EC-JRC-IRMM), in the frame of the Italian National Programme of Research in Antarctica (Programma Nazionale di Ricerca in Antartide, PNRA). Samples were collected at Terra Nova Bay (Ross Sea) during the 2000-2001 expedition in Antarctica. The preparation of a material suitable for certification was performed by the EC-JRC-IRMM. Measurements for homogeneity and short-term stability tests were carried out by ISS. The elements selected for the certification project were As, Cd, Cu, Cr, Fe, Mn, Ni and Zn. For the above-mentioned tests, the determination of the elements of interest was performed on samples mineralised by microwave-assisted acid digestion. The analytical techniques employed to this end were inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma dynamic reaction cell quadrupole mass spectrometry (ICP-DRC-Q-MS). The candidate material was shown to be fit for purpose with regard to homogeneity and short-term stability, thus allowing the following phases of the certification project to be undertaken, in the first place the selection of expert laboratories for the accomplishment of the certification campaign.  相似文献   

15.
为推进城市空气质量精细化管理工作的实施,实现VOCs污染源精准排查,2019年3-4月,利用单光子电离飞行时间质谱对青岛市重点区域进行了VOCs走航观测。在排查到的污染源中,工业区的VOCs浓度较生活区整体偏高,且生活区、工业区夜间的VOCs浓度均较白天高。VOCs各类组分中,生活区白天苯系物、卤代烃、烯烃、烷烃的占比均在20%左右,夜间苯系物占比明显升高;工业区苯系物在白天和夜间的占比均最高,其他组分相对较小。浓度较高的前10位VOCs物种中,生活区白天烯烃物种占主导,夜间烷烃物种的比重明显增加;工业区苯系物、烯烃物种在白天和夜间的比重均较大,烷烃物种较小。生活区VOCs的污染源主要为机动车尾气排放和油品挥发,工业区主要为企业排放。烯烃和苯系物臭氧生成贡献较烷烃高,特别是丁烯、戊烯、己烯、甲苯、二甲苯/乙苯、三甲苯贡献显著,建议作为优控物种重点管控。  相似文献   

16.
The proliferation of air-diffused microorganisms inside public buildings such as schools, hospitals, and universities, is often indicated as a possible health risk. In this research, we have illustrated the results of an investigation realized to determine the health of the air in some university classrooms, both from a microbiological and a microclimatic viewpoint, during the normal didactic activity of direct lessons. The results obtained have been expressed by means of contamination indices, already used in previous works. Very little contamination was recorded in the different phases of air treatment, which underlines the efficiency of the system and of the maintenance protocols. The Global Index of Microbial Contamination (GIMC per cubic meter) showed a value greater than the mean during the heating period (290), while the highest values (95th percentile 1,138.45) were recorded in the period using air conditioning. The index of mesophilic bacterial contamination, though it did not show any significant differences in the various modes of air treatment, showed a mean value (1.34) and the 95th percentile value (4.14), which was greater in the air-conditioning phase. Finally, the mean value of the amplification index underlined a decrease in the microbial contamination in comparison to the outside, while showing situations of increased microbial amplification during the period of simple ventilation (95th percentile 4.27). The 95th percentile values found for GICM in the three sampling periods, however, permitted us to identify the value of GIMC per cubic meter equal to 1,000 as a guide to provide a means of self-monitoring the quality of the air inside the classrooms. From a microclimatic viewpoint, two periods of the year manifested discomfort situations: during the heating phase (winter) and during the simple ventilation phase (spring). The results obtained indicate, therefore, a need to intervene on the environmental parameters, not being able, in this particular case, to intervene on other aspects that influence the microclimate.  相似文献   

17.
Long-term phenol, cresols and BTEX monitoring in urban air   总被引:1,自引:0,他引:1  
This paper reports the results of a long-term monitoring of benzene, toluene, ethylbenzene, xylenes (BTEX), phenol and cresols in the air of Padua during a wide period of the year 2007 using two radial passive samplers (Radiello system) equipped with BTEX- and phenol-specific cartridges. Two sites were monitored, one in the industrial area and one close to the town centre. Relevant pollution episodes have been observed during both the winter and summer periods. Benzene, together with toluene, ethylbenzene and xylenes showed their maximum concentrations during the winter season, but the secondary pollutant phenol was higher than benzene for a large period of the year when the meteorological conditions blocked the pollutants in the lower layers of the atmosphere and solar radiation increased the benzene photo-oxidation process.  相似文献   

18.
利用VOCs在线监测技术,对2010年宁波市北仑区空气内的VOCs的浓度、组成、变化规律及来源进行分析研究。结果表明,在北仑区域内的16种VOCs中,苯、甲苯、二甲苯、乙苯和己烷的比例占到了总数的82.9%,且该5种有机物浓度存在较为典型的季节性变化规律和日变化规律;采用CMD模型法对VOCs的来源进行解析后发现,北仑区域内的VOCs主要来源于汽车尾气、汽油蒸气和石油液化气,而且汽车尾气的贡献值要比一些大城市低得多,且夏季和冬季的成分源贡献率存在明显差异。  相似文献   

19.
When designing a monitoring campaign, one has to consider many factors in the decision to perform a long-term synoptic monitoring program or a short-term intensive study. Each has its own advantages and disadvantages. This paper compares and contrasts the information obtained from two studies conducted on the Laurentian Great Lakes. One, the Integrated Atmospheric Deposition Network (IADN), is a long-term synoptic monitoring study and the other, the Atmospheric Exchange Over Lakes and Oceans (AEOLOS), was a short-term intensive study. The advantages of long-term synoptic monitoring programs are providing greater spatial information, the relative influence of long and short-range transport on the regional background, gross loadings representative of the majority of each lake and long-term temporal trends. Short-term intensive studies provide more information on the processes governing sources, transport and deposition, such as the urban/industrial influence on adjacent large water bodies, specific sources to an urban/industrial area and short-term fluctuations in concentrations due to meteorology, source strength and photochemical reactions. Using information provided by both the IADN and AEOLOS studies, areas of urban influence are predicted for each of the five Great Lakes.  相似文献   

20.
The objective of the present study is the exploitation of active sampling personal exposure data in assessing the factors that affect exposure to benzene in combination with the widely accepted scheme of passive sampling—time microenvironment–activity diaries (TMAD). The campaign included personal exposure measurements with both passive and active sampling in several microenvironments, evaluation of TMAD kept by the volunteers, and a variety of environmental data (ambient air benzene determination, traffic and meteorological observations). Due to the relatively elevated benzene traffic emissions, average personal exposure was determined to be equal to 8.9 μg/m3, ranging between 5 and 20 μg/m3, which is a value highly related to the average urban concentration (9.2 μg/m3). The information gained from TMAD was embedded (in terms of spatial and temporal distribution) into three zones respectively, in order to draw statistically significant conclusions about the exposure levels and the activity patterns. The contribution of the activities to the overall amount of exposure was further quantified and refined by active sampling measurements. These data revealed that driving in a traffic-congested road was the main activity leading to elevated exposure levels (up to 70 μg/m3), followed by walking on the roadside of a congested road (up to 35 μg/m3). Indoor exposure to benzene was in general lower than outdoor (indicating that traffic is the dominant source of benzene emissions in the wider area), and it was significantly affected by the presence of environmental tobacco smoke. The higher significance of the regression coefficients obtained by statistical analysis of the active sampling data was fundamental for the development of a regression-based prediction exposure model. The model was evaluated through comparison with the passive sampling data, which were considered as an unknown but realistic data exposure pattern. The model performed very well in terms of expressing the variance of the exposure data with an average score of R 2 equal to 0.935. All of the above indicate that active sampling is a necessary albeit more laborious tool that needs to be used as a complement to passive sampling for precise quantification of the factors determining personal exposure patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号