首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 μg/m2/year in Cadillac Brook watershed and 10.2 μg/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 μg/m2/year in Cadillac Brook watershed and 0.10 μg/m2/year in Hadlock Brook watershed.  相似文献   

2.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   

3.
Plant species composition and community structure were compared among four sites in an upland black spruce community in northwestern Ontario. One site had remained undisturbed since the 1930s and three had been disturbed by either logging, fire, or both logging and fire. Canonical correspondence ordination analyses indicated that herbaceous species composition and abundance differed among the disturbance types while differences in the shrub and tree strata were less pronounced. In the herb stratum Pleurozium schreberi, Ptilium crista-castrensis and Dicranum polysetum were in greatest abundance on the undisturbed forest site, while the wildfire and burned cutover sites were dominated by Epilobium angustifolium and Polytrichum juniperinum. The unburned harvested site was dominated by Epilobium angustifolium, Cornus canadensis and Pleurozium schreberi. Species richness was lower on the undisturbed site than on any of the disturbed sites while species diversity (H) and evenness (Hill's E5) were higher on the unburned harvested site than on the other sites. Results suggest that herb re-establishment is different among harvested and burned sites in upland black spruce communities and we hypothesize that differences in the characteristics of the disturbance were responsible, in particular, the impact of burning on nutrient availability. These differences need to be taken into account in determining the effects of these disturbances on biodiversity and long-term ecosystem management.  相似文献   

4.
The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (相似文献   

5.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

6.
The Bear Brook Watershed in Maine (BBWM), USA, and the Fernow Experimental Forest in West Virginia, USA, represent unique, long-term, paired, whole watershed, experimental manipulations focusing on the effects of nitrogen (N) and sulfur (S) deposition on temperate forests. Both watersheds began whole-ecosystem additions of N and S as (NH4)2SO4 in the fall of 1989, and both are entering their third decade of chronic enrichment of the treated watersheds, while the reference watersheds offer unique opportunities to evaluate forest watershed responses to recovery. Differences between BBWM and Fernow in the history of atmospheric deposition, soil properties, and forest composition all contribute to different response trajectories in stream chemical exports over time. The four watersheds represent a spectrum of N enrichment and retention, ranging from ≈98% N retention in the reference watershed in Maine, to ≈20% N retention in the treated watershed in West Virginia. Despite these differences, there is evidence that mechanisms of response in base cation leaching and other processes are similar among all four watersheds. In both cases, the history to date of two decades of research and monitoring has provided new insights into ecosystem response not evident in more traditional short-term research.  相似文献   

7.
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.  相似文献   

8.
Riparian forest restoration has become a major focus of watershed initiatives to improve degraded stream ecosystems. In urban watersheds, however, the ability of riparian forests to improve stream ecosystems may be diminished due to widespread, upland disturbance. This paper presents the methodology and some preliminary results from the first year of fieldwork on a 3-year project designed to assess the ecological benefits of riparian reforestation in urban watersheds. The study is based on an integrated, multidisciplinary sampling of physical, chemical, and biological attributes at forested and non-forested sections of 12 streams with different amounts of urban developement within their watersheds. Restored sections of three streams are also being monitored over the 3-year duration of the project. Sampling and analysis will continue through December 2000.  相似文献   

9.
Fall and spring streamwater samples were analyzed for total mercury (Hg) and major ions from 47 locations on Mount Desert Island in Maine. Samples were collected in zones that were burned in a major wildfire in 1947 and in zones that were not burned. We hypothesized that Hg concentrations in streamwater would be higher from unburned sites than burned watersheds, because fire would volatilize stored Hg. The Hg concentrations, based on burn history, were not statistically distinct. However, significant statistical associations were noted between Hg and the amount of wetlands in the drainage systems and with streamwater dissolved organic carbon (DOC). An unexpected result was that wetlands mobilized more Hg by generating more DOC in total, but upland DOC was more efficient at transporting Hg because it transports more Hg per unit DOC. Mercury concentrations were higher in samples collected at lower elevations. Mercury was positively correlated with relative discharge, although this effect was not distinguished from the DOC association. In this research, sample site elevation and the presence of upstream wetlands and their associated DOC affected Hg concentrations more strongly than burn history.  相似文献   

10.
A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate–nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate–nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate–N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export.  相似文献   

11.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

12.
Streamflow values are commonly synthesized for locations where flow measurement stations are lacking or where only intermittent measurements are available. In an Appalachian Mountains dataset comprised of 29 watersheds, the most appropriate among geomorphic, geologic, and hydrogeologic datasets were selected for use in prediction of streamflow at watershed scale. A statistical model was developed using principal components analysis (PCA) and cluster analysis (CA) for. Using CA on variables derived from the PCA, an optimum set of variables was derived for predicting streamflow. Results indicate there are two categories of watersheds in the study area. The first is strongly correlated with climatic variables (precipitation, temperature, elevation, and groundwater recharge). The second is strongly correlated with two geomorphic variables (watershed slope and percentage of forested area). The spatial distribution of cluster classifications shows that watersheds dominated by the climatic component are located along the Allegheny Front while watersheds dominated by the geomorphic component are located in the Allegheny Plateau and Valley and Ridge physiographic provinces. These variations between the Allegheny Plateau and Valley and Ridge physiographic provinces suggest that, to accurately model streamflow, modeling needs be done based on natural physiographic boundaries rather than political boundaries. In this physiographic setting, elevation seems to be a major control.  相似文献   

13.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献   

14.
This study analyzes the significant impacts of typhoons and earthquakes on land cover change and hydrological response. The occurrence of landslides following typhoons and earthquakes is a major indicator of natural disturbance. The hydrological response of the Chenyulan watershed to land use change was assessed from 1996 to 2005. Land use changes revealed by seven remote images corresponded to typhoons and a catastrophic earthquake in central Taiwan. Hydrological response is discussed as the change in quantities and statistical distributions of hydrological components. The land cover change results indicate that the proportion of landslide relative to total area increased to 6.1% after the Chi-Chi earthquake, representing the largest increase during the study period. The study watershed is dominated by forest land cover. Comparisons of hydrological components reveal that the disturbance significantly affects base flow and direct runoff. The hydrological modeling results demonstrate that the change in forest area correlates with the variation of base flow and direct runoff. Base flow and direct runoff are sensitive to land use in discussions of distinction. The proposed approach quantifies the effect of typhoons and earthquakes on land cover changes.  相似文献   

15.
Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire’s impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire.  相似文献   

16.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   

17.
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.  相似文献   

18.
Dynamic Hydrologic Simulation of the Bear Brook Watershed in Maine (BBWM)   总被引:2,自引:0,他引:2  
Bear Brook Watershed in Maine (BBWM) consists of a pair of research watersheds, East Bear Brook (EBB) and West Bear Brook (WBB). Years of research and observations have shown both watersheds have high similarity in geographic and hydrologic characteristics; a simple comparison of hydrographs from these two watersheds further substantiates this similarity. The Object Watershed Link Simulation (OWLS) model was developed and used to simulate the hydrological processes within the BBWM. The OWLS model is a 3-dimensional, vector-based, visualized, physically-based, distributed watershed hydrologic model. Simulation results not only provide a close examination of hydrologic processes within a watershed, but also dynamically visualize the processes of flow separations and Variable Source Areas (VSA). Results from flow separations suggest that surface flow from riparian area is the predominate component for the flood rising limb and that macropore flow from riparian area dominates during the falling limb. Soil matrix flow has little effect flood period but is a persistent contributor to base flow. Results from VSA visualization demonstrate 3-D dynamic changes in surface flow distribution and suggest that downstream riparian areas are the major contributing area for peak flow. As water chemistry is highly relevant to the flow paths within a watershed, simulations have provided valuable information about source of stream flow and the water migration dynamics to support the study of watershed chemistry in the BBWM. More specific linkages between the chemistry behavior and the dynamic hydrologic processes should become the next simulation effort in the watershed study. There are many questions that are critical to watershed chemistry studies like: which flow component (surface flow, macropore flow, soil matrix flow) predominates during peak flows? How do the flow components distribute during a flood event? How do flow contributions differ between these two watersheds? Which portion of the watershed contributes the most to the peak flows? These questions remain unknown from previous observations and only can be addressed with a physically-based distributed model.  相似文献   

19.
The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sites were selected from eight-two independent watersheds across the region for sampling and analyses. Clustering of the watersheds by landscape resulted in three distinct groups (forest, crop, and urban) which coincided with watersheds dominant land cover or use. We used non-parametric analyses to test differences in benthos and water chemistry between groups, and used regression analyses to evaluate responses of benthic communities to water chemistry within each of the landscape groups. We found that typical water chemistry measures associated with urban runoff such as specific conductance and dissolved chloride were significantly higher in the urban group. In the crop group, we found variables commonly associated with farming such as nutrients and pesticides significantly greater than in the other two groups. Regression analyses demonstrated that the numbers of tolerant and facultative macroinvertebrates increased significantly in forested watersheds with small shifts in pollutants, while in human use dominated watersheds the intolerant macroinvertebrates were more sensitive to shifts in chemicals present at lower concentrations. The results from this study suggest that landscape based clustering can be used to link upstream landscape characteristics, water chemistry and biotic integrity in order to assess stream condition and likely cause of degradation without the use of reference sites. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.  相似文献   

20.
Quantifying the relative impacts of soil restoration or disturbance on watershed daily sediment and nutrients loads is essential towards assessing the actual costs/benefits of the land management. Such quantification requires stream monitoring programs capable of detecting changes in land-use or soil functional and erosive area “connectivity” conditions across the watershed. Previously, use of a local-scale, field-data based runoff and erosion model for three Lake Tahoe west-shore watersheds as a detection monitoring “proof of concept” suggested that analyses of midrange average daily flows can reveal sediment load reductions of relatively small watershed fractional areas (~5 %) of restored soil function within a few years of treatment. Developing such an effective stream monitoring program is considered for tributaries on the west shore of the Lake Tahoe Basin using continuous (15-min) stream monitoring information from Ward (2,521 ha), Blackwood (2,886 ha), and the Homewood (260 ha, HMR) Creek watersheds. The continuous total suspended sediment (TSS) and discharge monitoring confirmed the hysteretic TSS concentration—flowrate relationship associated with the daily and seasonal spring snowmelt hydrographs at all three creeks. Using the complete dataset, daily loads estimated from 1-h sampling periods during the day indicated that the optimal sampling hours were in the afternoon during the rising limb of the spring snowmelt hydrograph, an observation likely to apply across the Sierra Nevada and other snowmelt driven watersheds. Measured rising limb sediment loads were used to determine if soils restoration efforts (e.g., dirt road removal, ski run rehabilitation) at the HMR creek watershed reduced sediment loads between 2010 and 2011. A nearly 1.5-fold decrease in sediment yields (kg/ha per m3/s flow) was found suggesting that this focused monitoring approach may be useful towards development of TMDL “crediting” tools. Further monitoring is needed to verify these observations and confirm the value of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号