首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The aim of this study was to examine the fate of the organothiophosphorus pesticide methidathion during anaerobic digestion of biological waste. Three reactor experiments were conducted under various conditions of temperature, pH and retention time. The influence of pH and temperature as well as the partitioning between solid and aqueous phase were studied in batch experiments. The mesophilic (25, 35 degrees C) reactor experiments showed a decline to about 10% of the maximum methidathion concentration within 30-80 d. In the thermophilic (55 degrees C) reactor experiment, methidathion disappeared within 20 d. The batch experiments showed an abiotic hydrolysis of methidathion over the experiment period of 4 d, accelerated by alkaline conditions (pH 10.5 and 12.8) and high temperatures (55 degrees C). The hydrolysis was also noticeable at a neutral pH, while methidathion was most stable at weakly acid pH values. Methidathion bonded strongly to the biological waste, and the amount released into the water phase was below the maximum aqueous solubility. About 10% of methidathion remained non-extractable. High concentrations of dissolved organic carbon and yeast extract as a model substance for disintegrated cells further reduced the content of methidathion in the water phase, possibly caused by co-sorption to the solid organic matter.  相似文献   

2.
Enzymatic treatment of sanitary landfill leachate   总被引:2,自引:0,他引:2  
The objective of this investigation was to study the effectiveness of applying enzymes (bioaugmentation) for enhancement of biological treatability of leachates generated in a typical municipal solid waste sanitary landfill. The basic purpose of enzyme use is to enforce the biodecomposition of organic constituents, as well as to reduce nitrogen content. A laboratory-scale sequencing batch (bio)reactor (SBR) was used for the examination of enzymatic application. The effect of different operation strategies on the efficiency of this biological treatment process was studied to optimize performance, especially for the removal of nitrogen compounds and of biodegradable organic matter. It was found that the enzymatic process was able to remove organic matter effectively (expressed as BOD5 and COD) and nitrogen content, color and turbidity.  相似文献   

3.
Ağdağ ON  Sponza DT 《Chemosphere》2005,59(6):871-879
This study investigated the effects of alkalinity on the anaerobic treatment of the organic solid wastes collected from the kitchen of Engineering Faculty in Dokuz Eylul University, Izmir, Turkey and the leachate characteristics treated in three simulated landfill anaerobic bioreactors. All of the reactors were operated with leachate recirculation. One reactor was operated without alkalinity addition. The second reactor was operated by the addition of 3 g l-1 d-1 of NaHCO3 alkalinity to the leachate and the third reactor was operated by the addition of 6 g l-1 d-1 NaHCO3 alkalinity to the leachate. After 65 d of anaerobic incubation, it was observed that the chemical oxygen demand (COD), volatile fatty acids (VFA) concentrations, and biochemical oxygen demand to chemical oxygen demand (BOD5/COD) ratios in the leachate samples produced from the alkalinity added reactors were lower than the control reactor while the pH values were higher than the control reactor. The COD values were measured as 18900, 3800 and 2900 mg l-1 while the VFA concentrations were 6900, 1400 and 1290 mg l-1, respectively, in the leachate samples of the control, and reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 after 65 d of anaerobic incubation. The total nitrogen (TN), total phosphorus (TP) and ammonium nitrogen (NH4-N) concentrations in organic solid waste (OSW) significantly reduced in the reactor containing 6 g l-1 NaHCO3 by d 65. The values of pH were 6.54, 7.19 and 7.31, after 65 d of anaerobic incubation, respectively, in the aforementioned reactors results in neutral environmental conditions in alkalinity added reactors. Methane percentage of the control, reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 were 37%, 64% and 65%, respectively, after 65 d of incubation. BOD5/COD ratios of 0.27 and 0.25 were achieved in the 3 and 6 g l-1 NaHCO3 containing reactors, indicating a better OSW stabilization. Alkalinity addition reduced the waste quantity, the organic content of the solid waste and the biodegradation time.  相似文献   

4.
In spite of its wide-world economic relevance, wine production generates a huge amount of waste that threatens the environment. A batch experiment was designed to assess the effect of the amendment of an agricultural soil with two winery wastes (perlite and bentonite wastes) in the immobilization of cyprodinil. Waste addition (0, 10, 20, 40, and 80 Mg ha?1) and different times of incubation of soil-waste mixtures (1, 30, and 120 days) were tested. The addition of wastes improved the soil’s ability to immobilize cyprodinil, which was significantly correlated to total C content in soil-waste mixtures. Longer incubation times decreased the cyprodinil sorption possibly due to the mineralization of organic matter but also as a consequence of the high pH values reached after bentonite waste addition (up to 10.0). Cyprodinil desorption increased as the amount of waste added to soil, and the incubation time increased. The use of these winery wastes contributes to a more sustainable agriculture preventing fungicide mobilization to groundwater.  相似文献   

5.
Banat FA  Prechtl S  Bischof F 《Chemosphere》1999,39(12):2097-2106
The reduction of organic contaminants in sewage sludge is of great importance for a further sludge disposal or agricultural utilization. Laboratory scale batch experiments were performed to assess the potential use of the aerobic thermophilic treatment technique to reduce the concentration of difficult to degrade organic chemicals. Di-2-ethylhexyl phthalate (DEHP) was chosen as a model representative of these chemicals. The effect of the sludge temperature and aeration rate on the reduction of DEHP concentration as well as on the reduction of the organic dry solid (oDS) was investigated. With a specific air flow rate of 16 m3/m3.h and a thermophilic temperature of 63 degrees C it was possible to achieve up to 70% reduction of the DEHP concentration and 61% of oDS within 96 hours. The maximum degradation of the oDS matter occurred within the first 24 hours of operation whereby only little oDS was degraded afterward. During the experiments the reactor content was routinely monitored for pH, COD, along with the ammonia nitrogen and orthophosphate concentrations.  相似文献   

6.
固含率和稀释率对餐厨垃圾水解酸化过程的影响研究   总被引:2,自引:1,他引:1  
研究了餐厨垃圾分批厌氧消解过程中不同起始固含率(10%,12%和14%)和稀释率(0.25 d-1和0.33 d-1)对水解酸化过程pH值、垃圾消解、水解酸化液生产效率、脂肪酸组成和浓度等的影响。实验结果发现:以总固体去除率、单位质量垃圾累积COD溶出量(ACODm)和单位体积反应器累积COD溶出量(ACODv)等指标作为评价标准,起始固含率12%的体系具有较高的垃圾处理效率和反应器运行效率。与稀释率0.25 d-1的体系相比,稀释率0.33 d-1的体系在pH稳定性、总固体去除率和水解酸化液生产效率等方面具有明显的优势。所有体系中水解酸化产生的脂肪酸和醇均以乙酸、乙醇和丁酸为主,丙酸占总脂肪酸和醇的百分数在14.6%到17.1%之间,这种脂肪酸组成不会发生丙酸抑制,有利于后续产甲烷发酵的进行。  相似文献   

7.
The objective of this investigation was to compare two biological systems using attached-growth biomass, for treatment of leachates generated in a typical municipal solid waste sanitary landfill. A moving-bed biofilm process, which is a relatively new type of biological treatment system, has been examined. It is based on the use of small, free-floating polymeric (polyurethane) elements, while biomass is being grown and attached as biofilm on the surface of these porous carriers. A granular activated carbon (GAC) moving-bed biofilm process was also tested. This method combines both physico-chemical and biological removal mechanisms for the removal of pollutants. The presence of GAC offers a suitable porous media, which is able to adsorb both organic matter and ammonia, as well as to provide an appropriate surface onto which biomass can be attached and grown. A laboratory-scale sequencing batch reactor (SBR) was used for the examination of both carriers. The effects of different operation strategies on the efficiency of these biological treatment processes were studied in order to optimize their performance, especially for the removal of nitrogen compounds and of biodegradable organic matter. It has been found that these processes were able to remove nitrogen content almost completely and simultaneously, the removal of organic matter (expressed as BOD5 and COD), color and turbidity were sufficiently achieved.  相似文献   

8.
Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively. Natural sand (diameter, 0.3-2 mm), mainly constituted of silica, was used. In batch adsorption experiments, zinc adsorption is insignificant at pH 4, low and linear at pH 5, and increasingly nonlinear, of the Langmuir type, at pH 6 and 7 indicating near-saturation conditions of surface sites at these high pH values. In column experiments, Zn retardation increases and the maximum outlet concentration of Zn decreases with rising pH and acetate concentrations. Previous column tracer experiments revealed the occurrence of regionalized water transport in the column. Modeling these data was based on a non-electrostatic approach. Batch and column data modeling was based on the PHREEQC code that allows concomitant resolution of chemical speciation and regionalized water transport. The speciation calculation indicates that the ZnAcetate+ species is the dominant Zn species in the solutions used. Batch experimental curves are correctly modeled assuming the formation of the three surface species triple bond SiOZn+, triple bond SiOH-Zn Acetate+ and triple bond SiO-Zn(Acetate)2-. The column data could be adequately modeled assuming a two-region water transport and the formation of the same three species with the same thermodynamic constants determined in the batch experiments. The hypothesis of the modeling leads to a slight overestimation of the quantities of zinc eluted (10%) at pH 6 and 7, mostly in the desorption phase. These results show that the methodology used facilitates the correct modeling of both batch and transport experiments and formulation of the hypothesis on the interactions between the low reactive sand and a complex solution.  相似文献   

9.
Rendek E  Ducom G  Germain P 《Chemosphere》2006,64(7):1212-1218
The biodegradation of organic matter in municipal solid waste incinerator (MSWI) bottom ash was studied in order to investigate the interaction between the CO(2) produced by microbial respiration and bottom ash. Respiration tests were performed on bottom ash at different moisture contents in an incubator at 30 degrees C. O(2) consumption and CO(2) production were monitored and quantified. Leaching tests were carried out at the end of the experiments. Total organic carbon (TOC) leaching had decreased. Over a period of three weeks, pH decreased from 10.7 to 8.2 and bottom ash was considered to be fully carbonated. This showed that the organic matter found in bottom ash can provide a substrate for microbial activity. The CO(2) produced by microbial respiration was directly dissolved in bottom ash pore water in order to be mineralized in carbonate form. The origin of the carbon dioxide which induces maturation of bottom ash on weathering areas has never been really discussed and is often presumed to be atmospheric CO(2). However, biodegradation of organic matter could contribute for a large part to this phenomenon, depending on field-scale physico-chemical weathering conditions.  相似文献   

10.
This investigation reports on the effects of soil organic matter (SOM) during the oxidation of chlorophenols with Fe2+-catalyzed H2O2 (Fenton oxidation) system. The soil pH was 7.1 and was not altered. Sorption experiments of soil pre-treated under various oxidation conditions were performed. Concentrations of organic matter in the liquid phase and soil before and after oxidation were analyzed. The results were correlated to the observation in batch Fenton oxidation tests. They showed that the oxidation of chlorophenols at natural soil pH depended on the dose of H2O2 and Fe2+. The soil organic content did not vary significantly after various Fenton treatments, while the sorption of chlorophenols was 10-25% less by the oxidation. The concentration of chlorophenols in the liquid phase exhibited a "decrease and rebound" phenomenon in the batch Fenton oxidation tests. It appeared that the oxidation of SOM resulted in the release of sorbed chlorophenols which were then oxidized by the excess H2O2. An "oxidation-desorption-oxidation" scheme was proposed to describe one of the interaction mechanisms among the oxidant, SOM, and chlorophenols during oxidation.  相似文献   

11.
The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.  相似文献   

12.
通过对比运行试验,研究了内、外循环EGSB反应器酸碱特征及其调控能力。结果表明,内、外循环厌氧反应器内部的pH值分布规律相似,较低有机负荷时pH值梯度变化较小,较高负荷时随循环比变化pH值分布有所差别,但2种条件下循环比为3时反应器内pH值均可达到较均衡的分布。相同原水pH值条件下外循环体系pH值要高于内循环体系pH值,2种条件下体系pH值变化趋势较为一致,二者平均差值在0.5个单位左右。循环厌氧反应器系统pH值维持在6.3—6.8可以较好地保障系统正常运行,为了保证此条件,外循环运行方式对原水pH值的极限调节范围是4.5—6.8,内循环运行方式对原水pH值的极限调节范围是5.3—7.2。该成果对于研究和应用内外循环EGSB反应器具有理论参考和实用价值。  相似文献   

13.
The potential leaching of pollutants present in harbor sediments has to be evaluated in order to choose the best practices for managing them. Little is known about the speciation and mobility of heavy metals in these specific solid materials. The objective of this paper is to determine and model the leachability of copper, lead, and zinc present in harbor sediments in order to obtain essential new data. The mobility of inorganic contaminants in a polluted harbor sediment collected in France was investigated as a function of physicochemical conditions. The investigation relied mainly on the use of leaching tests performed in combination with mineralogical analysis and thermodynamic modeling using PHREEQC. The modeling phase was dedicated to both confirm the hypothesis formulated to explain the experimental results and improve the determination of the main physico-chemical parameters governing mobility. The experimental results and modeling showed that the release of copper, lead, and zinc is very low with deionized water which is due to the stability of the associated solid phases (organic matter, carbonate minerals, and/or iron sulfides) at natural slightly basic conditions. However, increased mobilization is observed under pH values below 6.0 and above 10.0. This methodology helped to consistently obtain the geochemical parameters governing the mobility of the contaminants studied.  相似文献   

14.
Sorption is one among the many techniques available for the removal of organic materials from potable water and waste water. Use of locally available Wood Charcoal (WC) is essential in place of costly activated charcoal to make the process more economical and lucrative. The vital objective of this investigation was to assess the performance of WC for the removal of DDT from the aqueous phase. The influence of important factors like, particle size, pH, and time of contact, which affects the sorption process was studied in this investigation using batch experiments. The removal kinetics were carried out under the temperature 27 degrees +/- 1 degrees C (room temperature) and the sorption kinetics constants were evaluated. Sorption equilibria study has also been carried out to develop the Freudlich's sorption isotherm equation from which the ultimate sorption capacity of WC for sorption of DDT was calculated.  相似文献   

15.
Removal of metal ions and humic acid from water by iron-coated filter media   总被引:8,自引:0,他引:8  
Lai CH  Chen CY 《Chemosphere》2001,44(5):1177-1184
Iron oxide is an excellent, regenerable adsorbent, and often controls free metals through adsorption reaction. The utilization of heating process for coating iron oxide on sand surface allowed the media to be used in a packed column. Iron-coated sand was investigated for adsorbing metal ions and natural organic matter from water by batch and column experiments. Chemical analysis (energy dispersive analysis of X-ray, EDAX) was used for characterizing the copper and lead adsorption sites on iron-coated sand. From the batch experiment results, the copper and lead ions could be removed simultaneously by the iron-coated sand in the competition adsorption system. The interaction between copper, lead ions and iron oxide on sand surface was primarily the chemical bonds. The maximum adsorption capacities of iron-coated sand for copper and lead were 0.259 mg Cu/g-sand and 1.211 mg Pb/g-sand, respectively. The presence of humic acid led to increase the adsorption of copper and lead. Results from column experiments indicated that the copper ions, lead ions and humic acid could be removed completely before the breakpoint. Consequently, the iron-coated sand may be applied for the adsorption/filtration of metal ions and natural organic matters from water.  相似文献   

16.
The volatile organic carbon (VOC) and odours emitted during the aerobic biological processing of municipal solid waste (MSW) was studied in a pilot-scale reactor. VOCs were detected by different techniques on solid waste samples and the outlet air stream, before and after a biofilter. Organic compounds (alpha-pinene, beta-myrcene, D-limonene) were also measured in condensate water and leachate from the process. Results showed uniformity in the composition of the air in the solid waste samples, air sampled during the process and condensed water, indicating a matrix-derived origin of these compounds. Leachates, however, contained substances with a quite different molecular structure from the compounds identified in the gaseous fraction. Most of the substances in the gaseous effluent had a hydrocarbon-like structure, mainly terpenoids. The odour produced and detected through olfactometry agreed with GC-MS analyses. This was true above all for terpenes.  相似文献   

17.
In order to investigate the influence of organic matter on arsenic retention, we used batch experiments at pH 7 to determine the adsorption of As(V) on three different solids: a crude, purified, Ca-exchanged kaolinite and two kaolinites coated with humic acids (HAs) having different nitrogen contents. We first examined the adsorption of each HA onto kaolinite, and then used the HA-kaolinite complexes to study As(V) adsorption. The results clearly show an influence of the HA coating on As adsorption. For example, with low initial As concentrations the solid/liquid partition coefficient (R(d)) for both HA complexes is greater than that for the crude kaolinite. We found that increasing the initial As concentrations decreased the R(d) values of the HA-coated kaolinites until finally they were the same as the crude kaolinite R(d) values. This suggests that adsorption occurs first on the HA sites and then, once the HA sites are saturated, on the remaining kaolinite sites. We also noted that the more reactive HA-kaolinite complex was the one with the highest N/C ratio. Comparing the amount of amine groups in the HA-kaolinite complexes with the total amount of adsorbed As indicates that the HA amine groups, due to their positive charge at pH 7, play a key role in the adsorption of As onto organic matter.  相似文献   

18.
以重庆某非规范填埋场为例,针对西南地区已封场非规范垃圾填埋场的稳定化进程进行了分析。按照场地布局选取4个采样点,在垃圾体上进行钻孔取样,分析不同深度的垃圾样pH值、有机质、含水率、生物可降解度以及垃圾样浸出液和填埋气组成以及各个指标随着填埋深度的变化规律,确定不同深度垃圾体的稳定化程度。结果表明,场内垃圾已呈现矿化垃圾特征;有机质、BDM、浸出液COD以及填埋气CH4含量等4个指标与填埋深度均较好地符合一级降解反应,可以预测垃圾体稳定化临界填埋深度。根据有机质、BDM、浸出液COD以及填埋气CH4含量等4个指标与填埋深度一级降解反应函数预测临界稳定化深度为15 m,与实测值判定的稳定化填埋深度相一致性。在对非规范垃圾填埋场场地利用过程中,需要先对未稳定的上层垃圾进行清理,并在已稳定的底层垃圾体上充填其他稳定介质后利用该地块。  相似文献   

19.
Forty-one phase diagrams and fifteen sand column experiments were conducted to evaluate the efficiency of three types of washing solutions to recover trichloroethylene (TCE) at residual saturation and to identify the recovery mechanisms involved. This study demonstrates that: (1) an alcohol and a surfactant combination is more efficient than an alcohol used alone in water; (2) the prediction of the dominant recovery mechanism from the tie line slopes in phase diagram is accurate and can be reproduced in sand column experiments; and (3) TCE recovery efficiency in sand column experiments is generally well represented by the position of the miscibility curve in phase diagrams in the low concentration range. However, the miscibility curve alone is not sufficient to exactly predict the TCE recovery mechanisms involved. Tie line slopes and the critical tie line have to be taken into consideration to select the active matter as well as its concentration and to predict the dominant recovery mechanism in sand column experiments. The sand column experiments quantified the recovery efficiency of each solution and identified the proportion of the recovery mechanisms (mobilisation vs. solubilisation). Washing solutions with an active matter concentration above the critical tie line caused dominating mobilisation. Mobilisation was also dominant when the active matter of the washing solution partitioned into the organic phase and the active matter concentration was below the critical tie line. Solubilisation and emulsification were dominant for washing solutions containing active matter, which principally partitioned into the aqueous phase and an active matter concentration below the critical tie line.  相似文献   

20.
准好氧填埋工艺陈腐垃圾的理化特性变化规律   总被引:1,自引:0,他引:1  
针对准好氧填埋工艺,研究了实际填埋场1~5年陈腐垃圾的含水率、有机质和腐殖质等理化特性动态变化规律。结果表明,垃圾含水率、电导率、有机质均随着填埋时间的增加呈现明显的降低趋势,且导气管附近垃圾样品(0 m)垃圾含水率、有机质降低速度相对较快,在填埋3年后含水率达到相对稳定的状态,有机质含量的降低主要发生在填埋处置的第2年;垃圾pH值、腐殖质提取率和富里酸含量呈现明显升高的趋势,且距离导气管较远垃圾样品(15 m)pH值升高速度相对较快,在填埋1年左右存在明显的酸化阶段;胡敏酸含量和HA/FA比则呈现出前期升高后期降低的趋势,其中导气管附近垃圾样品(0 m)的变化明显快于距离导气管较远(15 m)的垃圾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号