首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.

The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir–Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm? 1 and 0.984 ppm min? 1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

2.
In the present study, the photocatalytic degradation of Reactive Red 195 (RR195) from aqueous samples under UV-A irradiation by using anatase/brookite TiO2 (A/B TiO2) mesoporous nanoparticles has been investigated. Batch experiments were conducted to study the effects of the main parameters affecting the photocatalytic process. The effects and interactions of most influenced parameters, such as substrate concentration and catalyst load, were evaluated and optimized by using a central composite design model and a response surface methodology. The results indicated that the dye degradation efficiency in the experimental domain investigated was mainly affected by the tested variables, as well as their interaction effects. Analysis of variance showed a high coefficient of determination value (R 2?=?0.9947), thus ensuring a satisfactory adjustment of the first-order regression model (2FI model) with the experimental data. The obtained results also indicate that catalyst loading plays an important role in determining the removal efficiency of RR195 attributable to both photodegradation and adsorption process. Under optimal conditions (initial dye concentration (50 mg/L) and catalyst loading (2,000 mg/L), A/B TiO2 showed similar removal efficiency compared to that of commercial titania (Degussa P25). Also, at these conditions, complete degradation of RR195 can be achieved by both catalysts within 15 min under UV-A irradiation. The experiments demonstrated that dye removal on the prepared A/B TiO2 was facilitated by the synergistic effects between adsorption and photocatalysis. Photocatalytic mineralization of RR195 was monitored by total organic carbon. The recycling experiments confirmed the stability of the catalyst.  相似文献   

3.
This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol–gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95 % removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.  相似文献   

4.
This study synthesized multiwall carbon nanotube (MWNT)–titania (TiO2) composites and examined their characteristics and photocatalytic performance for the cleaning of gas-phase benzene, toluene, ethyl benzene, and o-xylene (BTEX) under simulated indoor conditions. Optical and spectral surveys of the as-synthesized composite confirmed that the TiO2 nanoparticles were bound intimately to the MWNT networks. The photocatalytic performance was evaluated using an annular-type reactor inner-coated with MWNT–TiO2 or Degussa P25 TiO2. The composite revealed gas removal ability superior to that of stand-alone TiO2. This composite was also less affected by humidity during toluene decomposition compared to the previous result obtained from a stand-alone TiO2. Unlike another previous result obtained from the TiO2, the performance of the composite was not affected by changes in input concentration (IC) within a simulated indoor air quality range (0.1–1.0 ppm) but it decreased significantly when the IC was increased to 5 and 10 ppm. As the flow rate was decreased from 4.0 to 1.0 L min?1, the average efficiency for the target compounds increased to 95% or ~100%. The MWNT–TiO2 composite could be applied effectively to the decomposition for BTEX under certain simulated indoor conditions.

Implications: Unlike water applications, there are few reports of gas-phase applications of multiwall carbon nanotubes (MWCNT)–TiO2 composites. This study found that MWCNT–TiO2 composites showed performance in the removal of toxic gaseous aromatic superior to that of stand-alone TiO2. In addition, the pollutant degradation efficiency of the composite was less affected by humidity than for a stand-alone TiO2 unit within a simulated indoor relative humidity range. Moreover, unlike the TiO2 unit, the composite's performance was not affected by variations in the input concentrations within the simulated indoor air quality (IAQ) range. In addition, the decomposition efficiencies increased to 100% with decreasing flow rate.  相似文献   

5.
To improve the removal efficiency on hydrogen sulfide (H2S), a biofilter was developed and was made of polyvinyl chloride (PVC) pipes. The effects of three different packings (i.e., packing A, packing B, and packing C), containing different proportions of activated carbon, sawdust, wormcast, perlite, and pig manure compost, based on different biofilter parameters on H2S removal efficiency, were investigated. With the extension of running time, the H2S removal rate of packing A reached up to 90.12%, that of packing B reached a peak at 92.96%, and that of packing C was highest at 87.21%. The contribution rate of each packing at the bottom of the device was significantly greater (p < 0.01) than that of other parts, and those of the top of the devices were all greater than those of the middle of the devices. The H2S removal rate increased with greater filler layer height. The removal rate of group B increased first with humidity, and then declined, with the optimal humidity level for the removal of H2S 50–65% in this study. With the prolongation of the run, the pH of packing A was reduced from 7.1 to 5.91, while the pH of packing B and C remained within the range of 6.53–7.10. An increase was found in the number of bacteria and fungi over time. The count of bacteria in packing B and C and following a decreasing order was bottom > middle > top, whereas that for fungi was the opposite. In conclusion, it is thought that packing B (comprising wormcast + sawdust + activated carbon) is more efficient in the removal of H2S than the other packings and may thus be utilized in biofilters. These results hope to provide useful information for future related research on the removal efficiency of H2S using packings.

Implications: Wormcasts use as biological filter packing to remove H2S is limited and needs yet to be explored. A comparative study on the removal efficiency of H2S using three packings showed the packings that included wormcast were more efficient than others, and showed the combined features of physical absorption and biological removal with long sustainability and good efficiency, although these were largely influenced by environmental factors and nutrient content for the microorganisms. In summary, wormcast could be utilized in biological filters in the future in related research beacuse of its good efficiency and low cost.  相似文献   


6.
Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined nondestructive techniques for particle light attenuation measurements on Teflon® filters to estimate BC. The incorporation of an inline Magee Scientific OT21 transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the United States. We analyzed 5393 archived Teflon® filters from the Chemical Speciation Network (CSN) collected during 2010–2011 and determined MAC by comparing light attenuation on Teflon® filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m2/g and varied by region and season across the United States, indicating that using a default value may lead to under- or overestimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light-scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon® filters by combining both gravimetric and BC measurements.

Implications: Robotic optical analysis is a valid, cost-effective means to obtain a vast amount of BC data from archived and current routine filters. A tailored mass absorption cross-section by region and season is necessary for a more representative estimate of BC. Initial light transmission measurements play an important role due to the variability in blank filter transmission. Combining gravimetric mass and BC analysis on a single Teflon® filter reduces costs for monitoring agencies and maximizes data collection.  相似文献   


7.
The obvious disadvantages of biotrickling filters (BTFs) are the long start-up time and low removal efficiency (RE) when treating refractory hydrophobic volatile organic compounds (VOCs), which limits its industrial application. It is worthwhile to investigate how to reduce the start-up period of the BTF for treating hydrophobic VOCs. Here, we present the first study to evaluate the strategy of toluene induction combined with toluene-styrene synchronous acclimatization during start-up in a laboratory-scale BTF inoculated with activated sludge for styrene removal, as well as the effects of styrene inlet concentration (0.279 to 2.659 g·m?3), empty bed residence time (EBRT) (i.e., 136, 90, 68, 45, 34 sec), humidity (7.7% to 88.9%), and pH (i.e., 4, 3, 2.5, 2) on the performance of the BTF system. The experiments were carried out under acidic conditions (pH 4.5) to make fungi dominant in the BTF. The start-up period for styrene in the BTF was shortened to about 28 days. A maximum elimination capacity (ECmax) of 126 g·m?3·hr?1 with an RE of 80% was attained when styrene inlet loading rate (ILR) was below 180 g·m?3·hr?1. The highest styrene RE(s) [of BTF] that could be achieved were 95% and 93.4%, respectively, for humidity of 7.7% and at pH 2. A single dominant fungal strain was isolated and identified as Candida palmioleophila strain MA-M11 based on the 26S ribosomal RNA gene. Overall, the styrene induction with the toluene-styrene synchronous acclimatization could markedly reduce the start-up period and enhance the RE of styrene. The BTF dominated by fungi exhibited good performance under low pH and humidity and great potential in treating styrene with higher inlet concentrations.

Implications: The application of the toluene induction combined with toluene-styrene synchronous acclimatization demonstrated to be a promising approach for the highly efficient removal of styrene. The toluene induction can accelerate biofilm formation, and the adaptability of microorganisms to styrene can be improved rapidly by the toluene-styrene synchronous acclimatization. The integrated application of two technologies can shorten the start-up period of biotrickling filters markedly and promote its industrial application.  相似文献   


8.
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions.

Implications: Development of region-specific emission estimation techniques for PM10 and PM2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.  相似文献   


9.
二甲基亚砜(DMSO)废水因其COD高、可生化性差的特性而较难处理。本实验以采用硫酸二甲酯法生产DMSO的某化工厂废水为研究对象,设计并建立了组合式光催化氧化装置联合水解酸化+MBR工艺的中试系统,探讨了组合式光催化氧化装置、氧化剂投加量、pH、反应时间和水力停留时间对系统处理效果的影响。结果表明,组合式光催化氧化装置可有效提高DMSO废水的可生化性。最优工艺参数为:按H2O2与原水COD质量浓度比为2∶1投加H2O2,在pH值为4、反应时间为6 h、水力停留时间为4 h的条件下,该系统对原水COD(5 000 mg/L)去除率大于98%,出水COD达到《污水综合排放标准》(GB 8978-1996)一级要求。  相似文献   

10.
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM2.5 and PM10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R2 for converted hourly averaged Dylos mass measurements versus a PM2.5 BAM was 0.79 and that versus a PM10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R2 = 0.35–0.81).

Implications: The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.  相似文献   


11.

This research aims to compare the disinfection and degradation effectiveness in water of a commercial suspension of nano-TiO2 (TiO2Levenger) with the standard TiO2Degussa P25. Photo-inactivation and photo-degradation experiments were conducted with UVA-vis light. Concerning the disinfection, the effects of TiO2 dose (0–2 g/l), water matrix, bacterium type (Gram-positive or Gram-negative), and bacterial regrowth after the photo-treatments were studied for each catalyst. The experimental results show that Enterococcus sp. (Gram-positive) was more resistant to the photo-treatments than Escherichia coli (Gram-negative) for both catalyst; however, postirradiation trends showed similar behavior for both bacteria, favoring regrowth for short-treated cells and decay for longer-treated ones. Caffeine was selected as a model substance of pharmaceuticals and personal care products. In terms of caffeine removal, the effects of TiO2 dose (0–2 g/l) and water matrix were analyzed. Besides, the comparison between mechanical coagulation-flocculation-decantation and simple decantation of TiO2 was carried out. The results show that simple decantation allowed the recovery of 97.5% of TiO2 Degussa P25 and TiO2 Levenger within 1 day of simple decantation, while applying the proposed mechanical coagulation-flocculation decantation 99.7% of recovery of both catalysts was achieved in 2 hours. Finally, the subsequent reuse of both catalysts was proved with little loss of efficiency in terms of photo-disinfection during the four cycles. Nevertheless, the standard TiO2 Degussa P25 photo-degradation efficiency of caffeine decreases considerably as compared to commercial suspension of TiO2 Levenger concerning the reutilization.

  相似文献   

12.
This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO2 that is doped with Cu2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced.

Implications: The CuO-doped anatase TiO2 powder was successfully synthesized in this study by a sol–gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.  相似文献   


13.
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations 2 days before hospital admission. An increment of 10 μg/m3 in PM2.5 and PM10 was correlated with a 6% (95% CI 1.02–-1.10) and 4% (95% CI 1.00–1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China.

Implications: This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.  相似文献   


14.

Purpose

The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants.

Methods

In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol?Cgel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV?Cvis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation.

Results

Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity.

Conclusion

We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.  相似文献   

15.
Scientists have effectively proved that vegetative environment buffers (VEBs) can be used for reducing dust emissions from livestock buildings, but they have seen fewer tests in poultry farms. A field research was conducted to assess the effectiveness of VEBs on reducing downwind transport of particulate matter (PM) from a ventilated poultry house in Changchun. Five plant species transferred from local area were used to establish five diverse VEBs and separately installed outside of the ventilation fans in summer 2017. The five plant species were Winged Euonymus (WE), Malus Spectabilis (MS), Padus Maackii (PAA), Acer Saccharum Marsh (ASM), and Padus Virginiana “Red Select Shrub” (PV_RSS). The mass concentrations of PM2.5 and PM10 (particulate matter with an aerodynamic diameter of 2.5 μm and 10 μm or less, respectively) were monitored at downwind and upwind sampling locations around the VEB. The results showed that with the presenting of VEBs, the particle concentrations at the downwind sampling point were significantly reduced compared with that at the upwind sampling point (p < 0.05). Specifically, compared to the control test without VEB, the VEB with PV_RSS had the best PM concentration reduction rate (CRR) of 47.24%±4.33% and 41.13%±5.83% for PM2.5 and PM10, respectively. The rough surface of plant leaves may help intercept more PM, though it was also affected by other factors (such as the blade angle, the interaction with wind) needed to be further investigated. The VEB with PV_RSS, which presented the best capacity of CRR, selectively intercepted PM, mainly related to the elements of N, Na, Mg, P, S, and Cl.

Implications: Five plant species, including WE, PAA, MS, ASM, and PV_RSS, were evaluated as VEBs to mitigate particulate emissions from outside of a ventilated poultry house in Changchun. They all significantly reduced particulate matter emissions. However, the PV_RSS presented the best capability of trapping fine and coarse particles: PM2.5 and PM10, respectively, while the PAA was the worst one. The microstructure of leaves affected particle deposition and remaining on the leaves, and PV_RSS selectively intercepted particulate matter mainly related to certain elements.  相似文献   


16.
This study reports the development, construction, and initial testing of a novel vibrational precipitator (VP), patented at Ohio University in 2016, that uses vibrating metal cables with water running over them to capture particulate matter in an exhaust stream. Unlike traditional electrostatic precipitators relying on electric energy to capture particles, this new system uses the concept of vortex shedding to produce vibrations in vertical cables running perpendicular to an exhaust stream. Collisions between particles in the exhaust stream and these vibrating cables cause the particles to land onto a thin film of flowing water around the cables, which carries the particles downward for collection and removal. Initial tests with air containing particulates of 3 micron average particle size show capture efficiencies up to 54% using U.S. Environmental Protection Agency (EPA) Method 5 to measure the particulate concentrations at the upstream and downstream of a VP comprising 8 cells. These results show that this system, without consuming any electric energy, has a significant potential to be a simple and cost-effective way to treat particle-laden exhaust gases.

Implications: In this work, for the first time, a novel precipitator is investigated that captures particles without using any particle charging and (hence) any electricity. The capture mechanism is governed by vibrations of collection electrodes, which are vertical steel cables wetted through continuous flow of water. Without any discharge electrodes, electrode suspension mechanism, and ability of the system to be installed in existing ducts, the novel precipitator becomes a simple chamber housing containing multiple collection electrode cells. The preliminary results show that this new technology can achieve net particulate matter capture efficiency of 54%. This paves a pathway forward for reducing capital and operating cost of air pollution control systems.  相似文献   


17.
Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20–60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories.

Implications: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.  相似文献   


18.
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers.

Implications: This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.  相似文献   


19.
Electrostatic precipitation is considered as an effective technology for fine particle removal. A lab-scale wet electrostatic precipitator (ESP) with wire-to-plate configuration was developed to study particle migration and collection. The performance of the wet ESP was evaluated in terms of the corona discharge characteristics, total removal efficiency and fractional removal efficiency. The corona discharge characteristics and particle removal abilities of the wet ESP were investigated and compared with dry ESP. Particle removal efficiency was influenced by discharge electrode type, SO2 concentration, specific collection area (SCA) and particle/droplet interaction. Results showed that the particle removal efficiency of wet ESP was elevated to 97.86% from 93.75% of dry ESP. Three types of discharge electrodes were investigated. Higher particle removal efficiency and larger migration velocity could be obtained with fishbone electrode. Particle removal efficiency decreased by 2.87% when SO2 concentration increased from 0 ppm to 43 ppm as a result of the suppression of corona discharge and particle charging. The removal efficiency increased with higher SCA, but it changed by only 0.71% with the SCA increasing from 25.0 m2/(m3/s) to 32.5 m2/(m3/s). Meanwhile, the increasing of particle and droplet concentration was favorable to the particle aggregation and improved particle removal efficiency.

Implications: This work tends to study the particle migration and collection under spraying condition. The performance of a wet electrostatic precipitator (ESP) is evaluated in terms of the corona discharge characteristics, total particle removal efficiency, and fractional particle removal efficiency. The effects of water droplets on particle removal, especially on removal of particles with different sizes, is investigated. The optimization work was done to determine appropriate water consumption, discharge electrode type, and specific collection area, which can provide a basis for wet ESP design and application.  相似文献   


20.
A self-flushing wet electrostatic precipitator was developed to investigate the removal performance for fine particles. Flexible material (polypropylene, 840A) and carbon steel in the form of a spiked band were adopted as the collection plate and discharge electrode, respectively. The particle concentration, morphology, and trace-element content were measured by electric low-pressure impactor, scanning electron microscope, and energy-dispersive x-ray spectroscopy, respectively, before and after the electrostatic precipitator. With increasing gas velocity, the collection efficiency of fine particles (up to 0.8 μm in diameter) increased, while it decreased for particles with diameters larger than 0.8 μm. Increasing the dust inlet concentration increased the collection efficiency up to a point, from which it then declined gradually with further increases in the inlet concentration. The particulate matter after the wet electrostatic precipitator showed different degrees of agglomeration. The collection efficiency of trace elements within PM10 was less than that of the PM10 itself. Notably, the water consumption in the current setup was significantly lower than for other treatment processes of comparable collection efficiencies.

Implications: Wet electrostatic precipitators, as fine filtration equipment, were generally applicable to coal-fired plants to reduce PM2.5 emissions in China. However, high energy consumption and unstable operation, such as water usage and spray washing directly in the electric field, seriously restricted the further development. The utilization of self-flushing wet electrostatic precipitator can solve these problems to some extent.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号