首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   4篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - The process TiO2/PAC/UV-vis has been under study and compared with the isolated treatments of adsorption and photocatalysis determining possible...  相似文献   
2.
3.

This research aims to compare the disinfection and degradation effectiveness in water of a commercial suspension of nano-TiO2 (TiO2Levenger) with the standard TiO2Degussa P25. Photo-inactivation and photo-degradation experiments were conducted with UVA-vis light. Concerning the disinfection, the effects of TiO2 dose (0–2 g/l), water matrix, bacterium type (Gram-positive or Gram-negative), and bacterial regrowth after the photo-treatments were studied for each catalyst. The experimental results show that Enterococcus sp. (Gram-positive) was more resistant to the photo-treatments than Escherichia coli (Gram-negative) for both catalyst; however, postirradiation trends showed similar behavior for both bacteria, favoring regrowth for short-treated cells and decay for longer-treated ones. Caffeine was selected as a model substance of pharmaceuticals and personal care products. In terms of caffeine removal, the effects of TiO2 dose (0–2 g/l) and water matrix were analyzed. Besides, the comparison between mechanical coagulation-flocculation-decantation and simple decantation of TiO2 was carried out. The results show that simple decantation allowed the recovery of 97.5% of TiO2 Degussa P25 and TiO2 Levenger within 1 day of simple decantation, while applying the proposed mechanical coagulation-flocculation decantation 99.7% of recovery of both catalysts was achieved in 2 hours. Finally, the subsequent reuse of both catalysts was proved with little loss of efficiency in terms of photo-disinfection during the four cycles. Nevertheless, the standard TiO2 Degussa P25 photo-degradation efficiency of caffeine decreases considerably as compared to commercial suspension of TiO2 Levenger concerning the reutilization.

  相似文献   
4.
The purpose of this work was to study the efficiency of different treatments, based on the combination of O3, H2O2, and TiO2, on fresh surface water samples fortified with wild strains of Escherichia coli. Moreover, an exhaustive assessment of the influence of the different agents involved in the treatment has been carried out by kinetic modeling of E. coli inactivation results. The treatments studied were (i) ozonation (O3), (ii) the peroxone system (O3/0.04 mM H2O2), (iii) catalytic ozonation (O3/1 g/L TiO2), and (iv) a combined treatment of O3/1 g/L TiO2/0.04 mM H2O2. It was observed that the peroxone system achieved the highest levels of inactivation of E. coli, around 6.80 log after 10 min of contact time. Catalytic ozonation also obtained high levels of inactivation in a short period of time, reaching 6.22 log in 10 min. Both treatments, the peroxone system (O3/H2O2) and catalytic ozonation (O3/TiO2), produced a higher inactivation rate of E. coli than ozonation (4.97 log after 10 min). While the combination of ozone with hydrogen peroxide or titanium dioxide thus produces an increase in the inactivation yield of E. coli regarding ozonation, the O3/TiO2/H2O2 combination did not enhance the inactivation results. The fitting of experimental values to the corresponding equations through non-linear regression techniques was carried out with Microsoft® Excel GInaFiT software. The inactivation results of E. coli did not respond to linear functions, and it was necessary to use mathematical models able to describe certain deviations in the bacterial inactivation processes. In this case, the inactivation results fit with mathematical models based on the hypothesis that the bacteria population is divided into two different subgroups with different degrees of resistance to treatments, for instance biphasic and biphasic with shoulder models.
Graphical abstract ?
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号