首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-methane volatile organic compounds (VOCs) emitted from boreal peatland microcosms were semiquantitatively determined using gas chromatography–mass spectrometry techniques in a growth chamber experiment. Furthermore, effects of vegetation composition and different ozone concentrations on these emissions were estimated by multivariate data analyses. The study concentrated on the less-studied VOCs, and isoprene was not analyzed. The analyses suggest that a sedge Eriophorum vaginatum is associated with emissions of the four most-emitted VOC groups (cyclic, aromatic, carbonyl and aliphatic hydrocarbon compounds) and also with VOCs emitted in smaller amounts (terpenoids and N-containing compounds). A woody dwarf shrub Andromeda polifolia was strongly associated with emissions of aromatic, carbonyl and terpenoid compounds. Results suggest that exposure to an ozone concentration of 150 ppb leads to an increased emission of most VOC groups. Emission of aromatic compounds seems to increase linearly with increasing ozone concentration. These observations indicate that peatlands may be a source of a vast range of volatile compounds to the atmosphere. For more accurate assessment of the impact of elevated tropospheric ozone on the terpenoid and non-terpenoid VOC emissions from peatlands, well-replicated open-air ozone-exposure experiments should be conducted.  相似文献   

2.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

3.
In order to quantify the contribution of solvent use and road traffic to the total non-methane volatile organic compound (NMVOC) emissions in Germany, the composition of air in the city of Wuppertal was investigated during three campaigns at different locations. The measurements covered NMVOCs in the range of C3–C10 hydrocarbons and C1–C6 oxygenated compounds. An assessment of the contribution from different emission sources to the observed NMVOC concentrations was attempted with the chemical mass balance (CMB) modelling technique. Emission profiles for traffic were obtained from measurements performed in a traffic tunnel, at a downtown street intersection and during drives through the city and on motorways. Solvent emission profiles were investigated in the vicinity of different factories and workshops using solvents in Wuppertal. Apportionment analyses were performed for several receptor points located down-wind from the city centre, in residential, dense traffic and industrial areas.The results of the present work show that traffic emission rather than solvent use determines the ambient NMVOC composition. The maximum contribution of solvent use to the NMVOC emission estimated on the basis of experimentally obtained results amounts to about 23% in the whole area of Wuppertal. It can be concluded that the contribution of solvent use to the NMVOC concentrations also in other German cities falls in the range of few to about 20%, assuming that Wuppertal can be considered as a typical German urban area with certain proportions of domestic, traffic and various industrial activities. These results are in strong disagreement with the German Emission Inventory, which states, that in the reference year 2003 about 51% of the total NMVOC emissions originate from solvent use and only 14% from traffic.  相似文献   

4.
A comprehensive study on landfill site selection for Kolkata City,India   总被引:1,自引:0,他引:1  
Kolkata is one of the four major metropolitan cities in India and the capital city of the state of West Bengal. With an area of 187.33 km2 and a population of about 10 million (including a floating population of about 6 million), the city generates about 3500 Metric Ton (MT) of solid waste per day. Currently, Kolkata Municipal Corporation (KMC) disposes its waste at Dhapa (21.47 ha), where the disposal rate exceeds 3000 MT/day, and at Garden Reach (3.52 ha), where the disposal rate is 100 MT/day. Considering the exhaustion of Dhapa land space, city planners are urgently searching for an alternate disposal ground. National Environmental Engineering Research Institute (NEERI), under the sponsorship of Central Pollution Control Board (CPCB), has brought out literature developing the site selection criteria for municipal solid waste disposal ground to suit Indian conditions. The developed criteria encompass environmental conditions, accessibility, geological and hydrogeological conditions, and ecological and societal effects. This paper attempts to locate the most suitable site for disposal of KMC area solid waste using the multicriterion decision analysis as stipulated in CPCB 2003 guidelines and the overlay analysis of geographic information system (GIS).
Implications:The paper is based on landfill site selection for dumping of solid waste generated within Kolkata Municipal Corporation (KMC) area. The methodology uses GIS/remote sensing, Site Sensitivity Index (an offshoot of pairwise comparison technique developed in CPCB 2003 guidelines, Government of India), and the Delphi technique. Dhapa landfill site, where solid waste of KMC area is currently being disposed, is exhausted; the authors of this article thus found it relevant to carry out a research on the selection of an alternative landfill site. The study undertaken was comprehensive, yet presented in a lucid way so that policymakers will find easy to comprehend.  相似文献   

5.
Open dumping and landfilling are the prevalent solid waste disposal practices in Thailand. Surveys on the disposal sites revealed the presence of 95 landfills and 330 open dumps. Methane emission potential at these sites was estimated by three methods. Results of the Intergovernmental Panel on Climate Change (IPCC) method, Landfill Gas Emission model (LandGEM), and closed flux chamber technique were compared. The methane emission potential of 366 Gg/yr using the IPCC method was higher than the estimations of the LandGEM and closed flux chamber method of 115 Gg/yr and 103 Gg/yr, respectively. An understanding of the methane emission potential initiated the analysis of upgrading the open dumps into landfills, adding landfills to meet the future needs and utilization of landfill gases. Upgrading the open dumps to landfills increased the methane emission rates and their utilization potential. Approximately 20 additional landfills may be required to meet future demands. Landfill gas (LFG) utilization appears to be feasible in the large-scale landfills.  相似文献   

6.
Zou SC  Lee SC  Chan CY  Ho KF  Wang XM  Chan LY  Zhang ZX 《Chemosphere》2003,51(9):1015-1022
Ambient air monitoring was conducted at Datianshan landfill, Guangzhou, South China in 1998 to investigate the seasonal and horizontal variations of trace volatile organic compounds (VOCs). Twelve sampling points over the Datianshan landfill were selected and samples were collected simultaneously using Carbontrap(TM) adsorption tubes. Thirty eight VOCs were detected in the winter, whereas 60 were detected in the summer. The VOC levels measured in summer were alkanes, 0.5-6.5 microg/m(3); aromatics, 2.3-1667 microg/m(3); chlorinated species, 0.2-31 microg/m(3); terpines, 0.1-34 microg/m(3); carbonyl species, 0.3-5.6 microg/m(3) and naphthalene and its derivatives, 0.4-27 microg/m(3). Compared to the summer samples the VOC levels in winter were much lower (mostly 1-2 orders of magnitude lower). The aromatics are dominant VOCs in landfill air both in winter and summer. High levels of alkylbenzene and terpines such as methyl-isopropylbenzene (max 1667 microg/m(3)) and limonene (max 162 microg/m(3)) cause undesirable odor. The similar correlation coefficients of BTEX in summer and winter suggest VOCs emissions were from landfill site sources. The variation of BTEX ratio at landfill site is different from that in the urban area of Guangzhou. It shows that the ambient VOCs at landfill site were different from the urban areas.  相似文献   

7.
Guo H  Lee SC  Louie PK  Ho KF 《Chemosphere》2004,57(10):1363-1372
Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical.  相似文献   

8.
The natural background in the ozone concentration at rural locations in the United States and western Europe has been estimated by use of several approaches. The approaches utilized include the following: (1) historical trends in ozone concentration measurements, (2) recent ozone measurements at remote sites, (3) use of tracers of air originating in the stratosphere or upper troposphere and (4) results from applications of tropospheric photochemical models. While each of these approaches has its own limitations it appears that the natural background of ozone during the warmer months of the year is in the range of 10 to 20 ppb. Most of the ozone originating in the lower stratosphere or upper troposphere is lost by chemical or physical removal processes as well as undergoing dilution by air in the lower troposphere before reaching ground level rural locations. Lower tropospheric photochemical processes, those below 5 km, are likely to account for most of the ozone measured at rural locations during the warmer months of the year.

A key aspect to improved quantitation of the contributions from lower tropospheric photochemical processes to ozone concentrations continues to be more extensive atmospheric measurements of the distribution of reactive species of nitrogen. The emission densities of anthropogenic sources of NOx are known to be highly variable over populated areas of continents as well as between continental areas and the oceans. The emission densities of biogenic sources of NOx are small, likely to be highly variable, but poorly quantitated. These wide variations indicate the need for use of three dimensional tropospheric photochemical models over large continental regions.

Available results do indicate higher efficiencies for ozone formation at lower NOx concentrations, especially below 1 ppb.  相似文献   

9.
Improper solid waste management leads to aesthetic and environmental problems. Emission of volatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography–mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under Hazardous Air Pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.

Implications: This paper describes the hazards of VOC emission from open dumpsites, a common practice, in an Indian metro city. The subsequent partitioning of the emitted VOCs in other environmental compartment from air is presented. The global warming potential and the health hazards to the dumpsite workers from the emitted VOCs have also been estimated.  相似文献   

10.
Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s?1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m?2 h?1 and 12 h cumulative emission ranged from 8.5 to 260 g m?2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.  相似文献   

11.
Abstract

Ozone and several polar volatile organic compounds (VOCs) including organic acids and carbonyls (aldehydes and ketones) were measured over an approximately 24 hour period in four residences during the winter of 1993 and in nine residences during the summer of 1993. All residences were in the greater Boston, Massachusetts area. The relation of the polar VOCs to the ozone concentration was examined. Indoor carbonyl concentrations were similar between the summer and winter, with the total mean winter concentration being 31.7 ppb and the total mean summer concentration being 36.6 ppb. However, the average air exchange rate was 0.9 hr?1 during the winter and 2.6 hr?1 during the summer. Therefore, the estimated carbonyl emission rates were significantly higher during the summer. Indoor organic acid concentrations were about twice as high during the summer as during the winter. For formic acid, the indoor winter mean was 9.8 ppb, and the summer indoor mean was 17.8 ppb. For acetic acid, the indoor winter mean was 15.5 ppb, and the summer indoor mean was 28.7 ppb. The concentrations of the polar VOCs were found to be significantly correlated with one another. Also, the emission rates of the polar VOCs were found to be correlated with both the environmental variables such as temperature and relative humidity and the ozone removal rate; however, it was difficult to apportion the relative effects of the environmental variables and the ozone removal.  相似文献   

12.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

13.

The quantitative assessment of landfill gas emissions is essential to assess the performance of the landfill cover and gas collection system. The relative error of the measured surface emission of landfill gas may be induced by the static flux chamber technique. This study aims to quantify effects of the size of the chamber, the insertion depth, pressure differential on the relative errors by using an integrated approach of in situ tests, and numerical modeling. A field experiment study of landfill gas emission is conducted by using a static chamber at one landfill site in Xi’an, Northwest China. Additionally, a two-dimensional axisymmetric numerical model for multi-component gas transport in the soil and the static chamber is developed based on the dusty-gas model (DGM). The proposed model is validated by the field data obtained in this study and a set of experimental data in the literature. The results show that DGM model has a better capacity to predict gas transport under a wider range of permeability compared to Blanc’s method. This is due to the fact that DGM model can explain the interaction among gases (e.g., CH4, CO2, O2, and N2) and the Knudsen diffusion process while these mechanisms are not included in Blanc’s model. Increasing the size and the insertion depth of static chambers can reduce the relative error for the flux of CH4 and CO2. For example, increasing the height of chambers from 0.55 to 1.1 m can decrease relative errors of CH4 and CO2 flux by 17% and 18%, respectively. Moreover, we find that gas emission fluxes for the case with positive pressure differential (?Pin-out) are greater than that of the case without considering pressure fluctuations. The Monte Carlo method was adopted to carry out the statistical analysis for quantifying the range of relative errors. The agreement of the measured field data and predicted results demonstrated that the proposed model has the capacity to quantify the emission of landfill gas from the landfill cover systems.

  相似文献   

14.
We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-beta-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.  相似文献   

15.
Peñuelas J  Llusià J 《Chemosphere》2001,45(3):237-244
The seasonal pattern of non-terpenoid C6-C10 VOC emission by seven Mediterranean woody species (Bupleurum fruticosum, Cistus albidus, Pinus halepensis, Arbutus unedo, Erica arborea, Quercus coccifera, and Q. ilex) was studied under field conditions. Branch chamber samples were sorbed on carbotrap and analyzed by thermal desorption in combination with GC-MS. These non-terpenoid C6-C10 VOC emissions were large, almost of similar magnitude to those of terpenes. Overall, maximum values were recorded in spring and summer (up to 12 microg g(-1) DM h(-1) in Q. ilex) and minimum values in autumn and winter (up to 5 microg g(-1) DM h(-1) in Q. ilex). These C6-C10 VOC emissions represented 2.82% of the photosynthetic C fixation in summer and 0.22% in winter. Some compounds such as 2-ethoxyethyl acetate were emitted by most species, others such as 3-hexen-1-ol, phenol or decanal were significantly emitted only by few species. The greatest diversity of emitted non-terpenoid C6-C10 VOCs was observed in spring and in Q. ilex. Temperature seemed a strong driver of these seasonal changes but other species-specific and seasonal factors seem involved. These results indicate that C6-C10 non-terpenoid VOCs contribute a rather significant fraction of the total biogenic VOC flux from these Mediterranean species, especially in spring and summer, and therefore should be considered in VOC emission inventories and in model predictions of tropospheric chemistry.  相似文献   

16.
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.  相似文献   

17.
The characteristics of volatile organic compounds (VOCs) and their annual trends in Seoul, Korea were investigated, with their optimal control strategy suggested. The annual concentration of VOCs (96.2–121.1 ppbC) has shown a decreasing trend from 2004 to 2008, suggesting the control strategy via the “Special Measures for Metropolitan Air Quality Improvement,” which was implemented in 2005, has been successful. The contributions of individual VOC to the production of ambient ozone and secondary organic aerosol (SOA) are discussed to assess the adequacy of current control strategies. The contribution of aromatics (C6–C10) to the production of ozone accounted for 38.7–46.3 % of the total ozone production, followed by low carbon alkanes (C2–C6) (27.0–35.9 %). The total SOA formation potential of VOCs was found to range from 2.5 to 3.5 μg m?3, mainly as a result of aromatics (C6–C10) (over 85 %). Considering the contributions from ozone and SOA production, it was concluded that solvent use was the most important emission source, followed by vehicle exhaust emissions. Thus, the current emission control strategy focused on these two emission sources is appropriate to reduce the VOCs related pollution level of the Seoul Metropolitan Region. Still, an additional control strategy, such as controlling the emissions from meat cooking, which is an emission source of high carbon alkanes (C7–C10), needs to be considered to further reduce the VOCs related pollution level in Seoul.  相似文献   

18.
In order to understand the formation mechanisms of high surface ozone and identify the main contributor sources in Beijing, this study investigates the sensitivity of surface ozone to NO, NO2 and nine types of NMVOC emissions during a photochemical smog episode. Monte Carlo sensitivity analysis scheme with fifty simulations is established based on the Nested Air Quality Prediction Model System (NAQPMS). At every simulation, each of the eleven precursor emissions is perturbed with a distinct set of perturbations. The sensitivities of ozone to emissions are identified by multiple linear regressions. The stability of sensitivity results is validated by two experiments with standard deviations of log-normal perturbations set as 30% and 50% respectively. The sensitivity results suggest that the current high surface ozone is strongly stimulated by NMVOC emissions. Among NMVOC emissions, formaldehyde, ethylene and olefins emissions present the greatest impacts on ozone. On the other hand, NOx emissions have a strong inhibitory effect on ozone formation, even after 50% NOx emission reduction. This indicates that the current ozone formation in Beijing is under NOx-saturated conditions. A transition of ozone formation is observed from NOx-saturated to NOx-limited sensitivity behavior with a 75% reduction of NOx emissions. This study gives the implication that abatement of the four NMVOC types mentioned above could be efficient on reducing the high levels of surface ozone in central urban Beijing, while inadequate abatement in NOx emissions probably induces reverse effects.  相似文献   

19.
The location of the northeastern Iberian Peninsula (NEIP) in the northwestern Mediterranean basin, the presence of the Pyrenees mountain range (with altitudes > 3000 m), and the influence of the Mediterranean Sea and the large valley canalization of Ebro river induce an extremely complicated structure for the dispersion of photochemical pollutants. Air pollution studies in very complex terrains such as the NEIP require high-resolution modeling for resolving the very complex dynamics of flows. To deal with the influence of larger-scale transport, however, high-resolution models have to be nested in larger models to generate appropriate initial and boundary conditions for the finer resolution domains. This article shows the results obtained through the utilization of the MM5-EMICAT2000-CMAQ multiscale-nested air quality model relating the sensitivity regimes for ozone (O3)-nitrogen oxides (NOx)-volatile organic compounds (VOCs) in an area of high geographical complexity, like the industrial area of Tarragona, located in the NEIP. The model was applied with fine temporal (one-hour) and spatial resolution (cells of 24 km, 2 km, and 1 km) to represent the chemistry and transport of tropospheric O3 and other photochemical species with respect to different hypothetical scenarios of emission controls and to quantify the influence of different emission sources in the area. Results indicate that O3 chemistry in the industrial domain of Tarragona is strongly sensitive to VOCs; the higher percentages of reduction for ground-level O3 are achieved when reducing by 25% the emissions of industrial VOCs. On the contrary, reductions in the industrial emissions of NOx contribute to a strong increase in hourly peak levels of O3. At the same time, the contribution of on-road traffic and biogenic emissions to ground-level O3 concentrations in the area is negligible with respect to the pervasive weight of industrial sources. This analysis provides an assessment of the effectiveness of different policies for the control of emission of precursors by comparing the modeled results for different scenarios.  相似文献   

20.
Hsu YC  Tsai JH  Chen HW  Lin WY 《Chemosphere》2001,42(3):227-234
Motor vehicle emission factors of carbon monoxide (CO) and non-methane volatile organic compounds (NMVOCs) were calculated inside the Chung-Cheng Tunnel of Kaohsiung in Taiwan. The results were compared with those model predictions from the Mobile Taiwan 2.0 model. Individual concentrations of 21 species of NMVOCs were also determined. Photochemical potential of NMVOCs was evaluated by using the maximum incremental reactivity (MIR). Field data showed that the integrated emission factors of CO and NMVOCs for actual fleet were 6.3 and 1.5 g/veh km, respectively. The error range of these factors may be up to 45%. The predicted values by the Mobile Taiwan 2.0 model closely matched the observed data. Concentrations of isopentane, 2-methylpentane, toluene and m,p-xylene were the dominant species of NMVOCs. The ratio of maximum incremental reactivity to NMVOCs concentration was 3.9, similar to those of the studies in the US Fort McHenry and Tuscarora Tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号