首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   

2.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

3.
• UV/VUV/I induces substantial H2O2 and IO3 formation, but UV/I does not. • Increasing DO level in water enhances H2O2 and iodate productions. • Increasing pH decreases H2O2 and iodate formation and also photo-oxidation. • The redox potentials of UV/VUV/I and UV/VUV changes with pH changes. • The treatability of the UV/VUV/I process was stronger than UV/VUV at pH 11.0. Recently, a photochemical process induced by ultraviolet (UV), vacuum UV (VUV), and iodide (I) has gained attention for its robust potential for contaminant degradation. However, the mechanisms behind this process remain unclear because both oxidizing and reducing reactants are likely generated. To better understand this process, this study examined the evolutions of hydrogen peroxide (H2O2) and iodine species (i.e., iodide, iodate, and triiodide) during the UV/VUV/I process under varying pH and dissolved oxygen (DO) conditions. Results show that increasing DO in water enhanced H2O2 and iodate production, suggesting that high DO favors the formation of oxidizing species. In contrast, increasing pH (from 6.0 to 11.0) resulted in lower H2O2 and iodate formation, indicating that there was a decrease of oxidative capacity for the UV/VUV/I process. In addition, difluoroacetic acid (DFAA) was used as an exemplar contaminant to verify above observations. Although its degradation kinetics did not follow a constant trend as pH increases, the relative importance of mineralization appeared declining, suggesting that there was a redox transition from an oxidizing environment to a reducing environment as pH rises. The treatability of the UV/VUV/I process was stronger than UV/VUV under pH of 11.0, while UV/VUV process presented a better performance at pH lower than 11.0.  相似文献   

4.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

5.
• Cu2O NPs/H2O2 Fenton process was intensified by membrane dispersion. • DMAc removal was enhanced to 98% for initial DMAc of 14000 mg/L. • Analyzed time-resolved degradation pathway of DMAc under ·OH attack. High-concentration industrial wastewater containing N,N-dimethylacetamide (DMAc) from polymeric membrane manufacturer was degraded in Cu2O NPs/H2O2 Fenton process. In the membrane-assisted Fenton process DMAc removal rate was up to 98% with 120 min which was increased by 23% over the batch reactor. It was found that ·OH quench time was extended by 20 min and the maximum ·OH productivity was notably 88.7% higher at 40 min. The degradation reaction rate constant was enhanced by 2.2 times with membrane dispersion (k = 0.0349 min1). DMAc initial concentration (C0) and H2O2 flux (Jp) had major influence on mass transfer and kinetics, meanwhile, membrane pore size (rp) and length (Lm) also affected the reaction rate. The intensified radical yield, fast mass transfer and nanoparticles high activity all contributed to improve pollutant degradation efficiency. Time-resolved DMAc degradation pathway was analyzed as hydroxylation, demethylation and oxidation leading to the final products of CO2, H2O and NO3 (rather than NH3 from biodegradation). Continuous process was operated in the dual-membrane configuration with in situ reaction and separation. After five cycling tests, DMAc removal was all above 95% for the initial [DMAc]0 = 14,000 mg/L in wastewater and stability of the catalyst and the membrane maintained well.  相似文献   

6.
• Nano CaO2 is evaluated as a remediation agent for 2,4-DCP contaminated groundwater. • 2,4-DCP degradation mechanism by different Fe2+ concentration was proposed. • 2,4-DCP was not degraded in the system for solution pH>10. • The 2,4-DCP degradation area is inconsistent with the nano CaO2 distribution area. This study evaluates the applicability of nano-sized calcium peroxide (CaO2) as a source of H2O2 to remediate 2,4-dichlorophenol (2,4-DCP) contaminated groundwater via the advanced oxidation process (AOP). First, the effect and mechanism of 2,4-DCP degradation by CaO2 at different Fe concentrations were studied (Fenton reaction). We found that at high Fe concentrations, 2,4-DCP almost completely degrades via primarily the oxidation of •OH within 5 h. At low Fe concentrations, the degradation rate of 2,4-DCP decreased rapidly. The main mechanism was the combined action of •OH and O2•−. Without Fe, the 2,4-DCP degradation reached 13.6% in 213 h, primarily via the heterogeneous reaction on the surface of CaO2. Besides, 2,4-DCP degradation was significantly affected by solution pH. When the solution pH was>10, the degradation was almost completely inhibited. Thus, we adopted a two-dimensional water tank experiment to study the remediation efficiency CaO2 on the water sample. We noticed that the degradation took place mainly in regions of pH<10 (i.e., CaO2 distribution area), both upstream and downstream of the tank. After 28 days of treatment, the average 2,4-DCP degradation level was ≈36.5%. Given the inadequacy of the results, we recommend that groundwater remediation using nano CaO2: (1) a buffer solution should be added to retard the rapid increase in pH, and (2) the nano CaO2 should be injected copiously in batches to reduce CaO2 deposition.  相似文献   

7.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   

8.
• Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., OH and O2). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.  相似文献   

9.
• Cu and Cr can be mostly incorporated into CuFexAlyCr2xyO4 with a spinel structure. • Spinel phase is the most crucial structure for Cu and Cr co-stabilization. • Compared to Al, Fe and Cr are easier to be incorporated into the spinel structure. • ‘Waste-to-resource’ by thermal process at attainable temperatures can be achieved. Chromium slag usually contains various heavy metals, making its safe treatment difficult. Glass-ceramic sintering has been applied to resolve this issue and emerged as an effective method for metal immobilization by incorporating heavy metals into stable crystal structures. Currently, there is limited knowledge about the reaction pathways adopted by multiple heavy metals and the co-stabilization functions of the crystal structure. To study the Cu/Cr co-stabilization mechanisms during thermal treatment, a simulated system was prepared using a mixture with a molar ratio of Al2O3:Fe2O3:Cr2O3:CuO= 1:1:1:3. The samples were sintered at temperatures 600–1300°C followed by intensive analysis of phase constitutions and microstructure development. A spinel phase (CuFexAlyCr2xyO4) started to generate at 700°C and the incorporation of Cu/Cr into the spinel largely complete at 900°C, although the spinel peak intensity continued increasing slightly at temperatures above 900°C. Fe2O3/Cr2O3 was more easily incorporated into the spinel at lower temperatures, while more Al2O3 was gradually incorporated into the spinel at higher temperatures. Additionally, sintered sample microstructures became more condensed and smoother with increased sintering temperature. Cu / Cr leachability substantially decreased after Cu/Cr incorporation into the spinel phase at elevated temperatures. At 600°C, the leached ratios for Cu and Cr were 6.28% and 0.65%, respectively. When sintering temperature was increased to 1300°C, the leached ratios for all metal components in the system were below 0.2%. This study proposes a sustainable method for managing Cu/Cr co-exist slag at reasonable temperatures.  相似文献   

10.
• A new pulsed switching peroxi-coagulation (PSPC) system was developed. • The ECT for 2,4-D removal in the PSPC was lower than that in the EF. • The iron consumption for 2,4-D removal in the PSPC was lower than that in the PC. The aim of this study was to develop a new pulsed switching peroxi-coagulation system to control hydroxyl radical (?OH) production and to enhance 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation. The system was constructed with a sacrifice iron anode, a Pt anode, and a gas diffusion cathode. Production of H2O2 and Fe2+ was controlled separately by time delayers with different pulsed switching frequencies. Under current densities of 5.0 mA/cm2 (H2O2) and 0.5 mA/cm2 (Fe2+), the ?OH production was optimized with the pulsed switching frequency of 1.0 s (H2O2):0.3 s (Fe2+) and the ratio of H2O2 to Fe2+ molar concentrations of 6.6. Under the optimal condition, 2,4-D with an initial concentration of 500 mg/L was completely removed in the system within 240 min. The energy consumption for the 2,4-D removal in the system was much lower than that in the electro-Fenton process (68±6 vs. 136±10 kWh/kg TOC). The iron consumption in the system was ~20 times as low as that in the peroxi-coagulation process (196±20 vs. 3940±400 mg/L) within 240 min. The system should be a promising peroxi-coagulation method for organic pollutants removal in wastewater.  相似文献   

11.
• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction. • Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12. • Mn0 can activate persulfate to form hydroxyl and sulfate radicals. • Oxidation-induced precipitation and surface complexation contribute to Tl removal. • Combined Mn0-oxidants process is promising in the environmental field. Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82 or Mn0-ClO system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82 oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82 system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.  相似文献   

12.
• Gas diffusion electrode (GDE) is a suitable setup for practical water treatment. • Electrochemical H2O2 production is an economically competitive technology. • High current efficiency of H2O2 production was obtained with GDE at 5–400 mA/cm2. • GDE maintained high stability for H2O2 production for ~1000 h. • Electro-generation of H2O2 enhances ibuprofen removal in an E-peroxone process. This study evaluated the feasibility of electrochemical hydrogen peroxide (H2O2) production with gas diffusion electrode (GDE) for decentralized water treatment. Carbon black-polytetrafluoroethylene GDEs were prepared and tested in a continuous flow electrochemical cell for H2O2 production from oxygen reduction. Results showed that because of the effective oxygen transfer in GDEs, the electrode maintained high apparent current efficiencies (ACEs,>80%) for H2O2 production over a wide current density range of 5–400 mA/cm2, and H2O2 production rates as high as ~202 mg/h/cm2 could be obtained. Long-term stability test showed that the GDE maintained high ACEs (>85%) and low energy consumption (<10 kWh/kg H2O2) for H2O2 production for 42 d (~1000 h). However, the ACEs then decreased to ~70% in the following 4 days because water flooding of GDE pores considerably impeded oxygen transport at the late stage of the trial. Based on an electrode lifetime of 46 days, the overall cost for H2O2 production was estimated to be ~0.88 $/kg H2O2, including an electricity cost of 0.61 $/kg and an electrode capital cost of 0.27 $/kg. With a 9 cm2 GDE and 40 mA/cm2 current density, ~2–4 mg/L of H2O2 could be produced on site for the electro-peroxone treatment of a 1.2 m3/d groundwater flow, which considerably enhanced ibuprofen abatement compared with ozonation alone (~43%–59% vs. 7%). These findings suggest that electrochemical H2O2 production with GDEs holds great promise for the development of compact treatment technologies for decentralized water treatment at a household and community level.  相似文献   

13.
• The calculation process and algorithm of response surface model (RSM) were enhanced. • The prediction errors of RSM in the margin and transition areas were greatly reduced. • The enhanced RSM was able to analyze O3-NOx-VOC sensitivity in real-time. • The O3 formations were mainly sensitive to VOC, for the two case study regions. Quantification of the nonlinearities between ambient ozone (O3) and the emissions of nitrogen oxides (NOx) and volatile organic compound (VOC) is a prerequisite for an effective O3 control strategy. An Enhanced polynomial functions Response Surface Model (Epf-RSM) with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model (ERSM) system. The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes. Several comparisons between Epf-RSM and pf-ERSM (polynomial functions based ERSM) were performed using out-of-sample validation, together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams. The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to over-fitting in the margin areas and high biases in the transition areas. The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results. The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January, April, and October, while more NOx-sensitive in July.  相似文献   

14.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   

15.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

16.
• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx. • The crystallinity of FeTiOx was decreased dramatically after CeO2 doping. • Unique Ce-O-Fe structure in FeCe0.2TiOx accounted for its superior redox property. • Facile activation of NH3 to-NH2 on FeCe0.2TiOx promoted the DeNOx efficiency. FeTiOx has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction (SCR) of NOx with NH3. Aimed at further improving the low-temperature DeNOx efficiency of FeTiOx catalyst, a simple strategy of CeO2 doping was proposed. The low-temperature (<250℃) NH3-SCR activity of FeTiOx catalyst could be dramatically enhanced by CeO2 doping, and the optimal composition of the catalyst was confirmed as FeCe0.2TiOx, which performed a NOx conversion of 90% at ca. 200℃. According to X-ray diffraction (XRD), Raman spectra and X-ray absorption fine structure spectroscopy (XAFS) analysis, FeCe0.2TiOx showed low crystallinity, with Fe and Ce species well mixed with each other. Based on the fitting results of extended X-ray absorption fine structure (EXAFS), a unique Ce-O-Fe structure was formed in FeCe0.2TiOx catalyst. The well improved specific surface area and the newly formed Ce-O-Fe structure dramatically contributed to the improvement of the redox property of FeCe0.2TiOx catalyst, which was well confirmed by H2-temperature-programmed reduction (H2-TPR) and in situ XAFS experiments. Such enhanced redox capability could benefit the activation of NO and NH3 at low temperatures for NOx removal. The detailed reaction mechanism study further suggested that the facile oxidative dehydrogenation of NH3 to highly reactive-NH2 played a key role in enhancing the low-temperature NH3-SCR performance of FeCe0.2TiOx catalyst.  相似文献   

17.
• Pt/CZL exhibits the optimum catalytic performance for HC and NOx elimination. • The strong PM-Ce interaction favors the oxygen mobility and DOSC. • Pd/CZL shows higher catalytic activity for CO conversion due to more Olatt species. • Great oxygen mobility at high temperature broadens the dynamic operation window. • The relationship between DOSC and catalytic performance is revealed. The physicochemical properties of Pt-, Pd- and Rh- loaded (Ce,Zr,La)O2 (shorted for CZL) catalysts before/after aging treatment were systematically characterized by various techniques to illustrate the relationship of the dynamic oxygen storage/release capacity and redox ability with their catalytic performances for HC, NOx and CO conversions. Pt/CZL catalyst exhibits the optimum catalytic performance for HC and NOx elimination, which mainly contribute to its excellent redox ability and dynamic oxygen storage/release capacity (DOSC) at lower temperature due to the stronger PM (precious metals)-support interaction. However, the worse stability of Pt-O-Ce species and volatile Pt oxides easily result in the dramatical decline in catalytic activity after aging. Pd/CZL shows higher catalytic activity for CO conversion by reason of more Olatt species as the active oxygen for CO oxidation reaction. Rh/CZL catalyst displays the widest dynamic operation window for NOx elimination as a result of greater oxygen mobility at high temperature, and the ability to retain more Rh-O-Ce species after calcined at 1100°C effectively restrains sintering of active RhOx species, improving the thermal stability of Rh/CZL catalyst.  相似文献   

18.
• Size and shape-dependent MnFe2O4 NPs were prepared via a facile method. • Ligand-exchange chemistry was used to prepare the hydrophilic MnFe2O4 NPs. • The catalytic properties of MnFe2O4 NPs toward dye degradation were fully studied. • The catalytic activities of MnFe2O4 NPs followed Michaelis–Menten behavior. • All the MnFe2O4 NPs exhibit selective degradation to different dyes. The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.  相似文献   

19.
• With the same charge, current density had little effect on As(III) removal in ACEC. • ACEC had the lowest energy consumption compared with EC/O2 or EC/N2. • There was a trade-off relationship between energy consumption and removal time. • The ·OH concentration in ACEC was 1.5 times of that in the EC/O2 system. Naturally occurring arsenic enrichment in groundwater poses a huge threat to human health. Air cathode electrocoagulation (ACEC) has recently been proposed to enhance As(III) oxidation and lower energy consumption. In this study, ACEC, EC/O2 and EC/N2 were evaluated with different current densities from 1 to 8 mA/cm2 to investigate the effect on As(III) removal in different redox environments. Current density had no appreciable effect on arsenic removal efficiency given the same charge in ACEC because the concentration ratio of Fe/H2O2 under different current densities remained stable. However, in EC/O2 and EC/N2, As(III) removal was inhibited at higher current densities (4–8 mA/cm2), likely because more Fe(II) competed with As(III) for the oxidant, leading to less effective oxidation of As(III). In all EC systems, the ·OH units generated per power consumption reached the highest value at the lowest current density. Compared with other EC systems, the ACEC system showed lower energy consumption at all current densities due to the low energy consumption of the electrode reaction and more free radical generation. A lower current density saved more energy at the expense of time, showing the trade-off relationship between energy consumption and removal time. The operation costs for As(III) removal under optimal conditions were calculated as 0.028 $/m3 for ACEC, 0.030 $/m3 for EC/O2, and 0.085 $/m3 for EC/N2  相似文献   

20.
• The coupling of oxidants with ZVI overcome the impedance of ZVI passive layer. • ZVI/oxidants system achieved fast and long-effective removal of contaminants. • Multiple mechanisms are involved in contaminants removal by ZVI/oxidant system. • ZVI/Oxidants did not change the reducing property of ORP in the fixed-bed system. Zero-valent iron (ZVI) technology has recently gained significant interest in the efficient sequestration of a wide variety of contaminants. However, surface passivation of ZVI because of its intrinsic passive layer would lead to the inferior reactivity of ZVI and its lower efficacy in contaminant removal. Therefore, to activate the ZVI surface cheaply, continuously, and efficiently is an important challenge that ZVI technology must overcome before its wide-scale application. To date, several physical and chemical approaches have been extensively applied to increase the reactivity of the ZVI surface toward the elimination of broad-spectrum pollutants. Nevertheless, these techniques have several limitations such as low efficacy, narrow working pH, eco-toxicity, and high installation cost. The objective of this mini-review paper is to identify the critical role of oxygen in determining the reactivity of ZVI toward contaminant removal. Subsequently, the effect of three typical oxidants (H2O2, KMnO4, and NaClO) on broad-spectrum contaminants removal by ZVI has been documented and discussed. The reaction mechanism and sequestration efficacies of the ZVI/oxidant system were evaluated and reviewed. The technical basis of the ZVI/oxidant approach is based on the half-reaction of the cathodic reduction of the oxidants. The oxidants commonly used in the water treatment industry, i.e., NaClO, O3, and H2O2, can be served as an ideal coupling electron receptor. With the combination of these oxidants, the surface corrosion of ZVI can be continuously driven. The ZVI/oxidants technology has been compared with other conventional technologies and conclusions have been drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号