首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. venusta TJPU05 showed excellent HN-AD ability at high salinity. • Successful expression of AMO, HAO, NAR and NIR confirmed the HN-AD ability of TJPU05. H. venusta TJPU05 could tolerate high salt and high nitrogen environment. H. venusta TJPU05 is a promising candidate for the bio-treatment of AW. A novel salt-tolerant heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium was isolated and identified as Halomonas venusta TJPU05 (H. venusta TJPU05). The nitrogen removal performance of H. venusta TJPU05 in simulated water (SW) with sole or mixed nitrogen sources and in actual wastewater (AW) with high concentration of salt and nitrogen was investigated. The results showed that 86.12% of NH4+-N, 95.68% of NO3-N, 100% of NO2-N and 84.57% of total nitrogen (TN) could be removed from SW with sole nitrogen sources within 24 h at the utmost. H. venusta TJPU05 could maximally remove 84.06% of NH4+-N, 92.33% of NO3-N, 92.9% of NO2-N and 77.73% of TN from SW with mixed nitrogen source when the salinity was above 8%. The application of H. venusta TJPU05 in treating AW with high salt and high ammonia nitrogen led to removal efficiencies of 50.96%, 47.28% and 43.19% for NH4+-N, NO3-N and TN respectively without any optimization. Furthermore, the activities of nitrogen removal–related enzymes of the strain were also investigated. The successful detection of high level activities of ammonia oxygenase (AMO), hydroxylamine oxidase (HAO), nitrate reductase (NAR) and nitrite reductase (NIR) enzymes under high salinity condition further proved the HN-AD and salt-tolerance capacity of H. venusta TJPU05. These results demonstrated that the H. venusta TJPU05 has great potential in treating high-salinity nitrogenous wastewater.  相似文献   

2.
• Microbes enhance denitrification under varying DO concentrations and SIF dosages. • Abiotic nitrate reduction rates are proportional to SIF age and dosage. • Over 80% of the simultaneously loaded NO3-N and PO43 is removed biologically. This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings (SIF) are used as electron donors and adsorbents in low C/N ratio waters. Batch studies were conducted in abiotic and biotic reactors containing fresh and aged SIF under different dissolved oxygen concentrations with NO3-N and/or PO43- influent(s) and their nitrate/phosphate removal and by-product formations were studied. Batch reactors were seeded with a homogenized mixed microbial inoculum procured from natural sludges which were enriched over 6 months under denitrifying conditions in the presence of SIF. Results indicated that when influent containing 40 mg/L of NO3-N was treated with 5 g SIF, 79.9% nitrate reduction was observed in 8 days abiotically and 100% removal was accomplished in 20 days when the reactor was seeded. Both abiotic and seeded reactors removed more than 92% PO43 under high DO conditions in 12 days. Abiotic and biochemical removal of NO3-N and abiotic removal of PO43 were higher under independent NO3-N/PO43 loading, while 99% PO43- was removed biochemically under combined NO3-N and PO43 loading. This study furthers the understandings of nitrate and phosphate removal in Zero Valent Iron (ZVI) assisted mixed microbial systems to encourage the application of SIF-supported bio-chemical processes in the simultaneous removals of these pollutants.  相似文献   

3.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

4.
• OBS inhibited the growth of P. stutzeri and destroyed its structure. • OBS was toxic to the aerobic denitrification process of P. stutzeri. • OBS induced the production of ROS in P. stutzeri. • OBS affected the expression of key genes involved in denitrification and SOD. The toxicities of sodium perfluorononyloxy-benzenesulfonate (OBS) to animals and plants are similar to those of perfluorooctane sulfonate. However, the mechanism of its toxicity to aerobic denitrifying bacteria is still unclear. In the present study, the ecotoxicity of OBS on an aerobic denitrifying strain, Pseudomonas stutzeri, was evaluated. The results showed that a dosage of OBS clearly affected the growth and aerobic denitrification of P. stutzeri. When compared with an unamended control, the degradation efficiency of the total nitrogen decreased by 30.13% during exposure to 200 mg/L of OBS, and the complete degradation time of nitrate-nitrogen was delayed by 4 h. The lactate dehydrogenase and superoxide dismutase produced by the bacteria increased with the concentration of OBS, and reactive oxygen species were also detected by confocal laser scanning microscope imaging. Transmission electron microscope imaging revealed chromosome deformation of the cells and damage to cell content; moreover, outer membrane vesicles were secreted from the bacteria, which was the important detoxification mechanism of P. stutzeri to OBS. Expression of the genes involved in aerobic nitrification and oxidative stress were also changed under OBS stress, which further confirmed the toxicity of OBS to P. stutzeri. This study reveals the environmental exposure risk of OBS from the perspective of microorganisms.  相似文献   

5.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

6.
•Bacterially-mediated coupled N and Fe processes examined in incubation experiments. •NO3 reduction was considerably inhibited as initial Fe/N ratio increased. •The maximum production of N2 occurred at an initial Fe/N molar ratio of 6. •Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides. The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe(II) oxidation processes.  相似文献   

7.
• CW-Fe allowed a high-performance of NO3-N removal at the COD/N ratio of 0. • Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. • The application of s-Fe0 contributed to TIN removal in wetland mesocosm. • s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3-N reduction characteristics of s-Fe0 in a wetland mesocosm.  相似文献   

8.
• PN-A was start-up under low inoculation amount and a higher NRR was achieved. • PN-anammox system was successfully restored by aggressive sludge discharge. • Increase in granular sludge was the important factor to rapid recovery. • Enrichment of AOB and AnAOB in granular sludge favors the stable operation. Partial nitritation (PN)-anaerobic ammonium oxidation (anammox) is a promising pathway for the biological treatment of wastewater. However, the destruction of the system caused by excessive accumulation of nitrate in long-term operation remains a challenge. In this study, PN-anammox was initialized with low inoculation quantity in an air-lift reactor. The nitrogen removal rate of 0.71 kgN/(m3·d) was obtained, which was far higher than the seed sludge (0.3 kgN/(m3·d)). Thereafter, excess nitrate build-up was observed under low-loading conditions, and recovery strategies for the PN-anammox system were investigated. Experimental results suggest that increasing the nitrogen loading rate as well as the concentration of free ammonium failed to effectively suppress the nitrite oxidation bacteria (NOB) after the PN-anammox system was disrupted. Afterwards, effluent back-flow was added into the reactor to control the up-flow velocity. As a result, an aggressive discharge of sludge that promoted the synergetic growth of functional bacteria was achieved, leading to the successful restoration of the PN-anammox system. The partial nitritation and anammox activity were in balance, and an increase in nitrogen removal rate up to 1.07 kgN/(m3·d) was obtained with a nitrogen removal efficiency of 82.4% after recovery. Besides, the proportion of granular sludge (over 200 mm) increased from 33.67% to 82.82%. Ammonium oxidation bacteria (AOB) along with anammox bacteria were enriched in the granular sludge during the recovery period, which was crucial for the recovery and stable operation of the PN-anammox system.  相似文献   

9.
• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis. • Reutilize pyrolysis waste tire as micro-electrolysis and electrode materials. • Total nitrogen removal efficiency of modified MFC increased to 85.00%. Candidatus kuenenia and SM1A02 were major genera responsible for nitrogen removal. In this study, microbial fuel cells (MFCs) were explored to promote the nitrogen removal performance of combined anaerobic ammonium oxidation (anammox) and Fe-C micro-electrolysis (CAE) systems. The average total nitrogen (TN) removal efficiency of the modified MFC system was 85.00%, while that of the anammox system was 62.16%. Additionally, the effective operation time of this system increased from six (CAE system alone) to over 50 days, significantly promoting TN removal. The enhanced performance could be attributed to the electron transferred from the anode to the cathode, which aided in reducing nitrate/nitrite in denitrification. The H+ released through the proton exchange membrane caused a decrease in the pH, facilitating Fe corrosion. The pyrolyzed waste tire used as the cathode could immobilize microorganisms, enhance electron transport, and produce a natural Fe-C micro-electrolysis system. According to the microbial community analysis, Candidatus kuenenia was the major genus involved in the anammox process. Furthermore, the SM1A02 genus exhibited the highest abundance and was enriched the fastest, and could be a novel potential strain that aids the anammox process.  相似文献   

10.
•Earthworms were able to convert green waste into more plant-available nutrients. •The part of heavy metals content increased in the compost added by earthworm. •The addition of SCB to GW did enhance earthworm biomass and humic acid content. •The resulting vermicomposts were characterized by neutral pH and lower EC value. Vermicomposting is a feasible method for disposing of lignocellulosic waste while generating a useful product. The current study assessed the potential of vermicomposting green waste mixed with sugarcane bagasse in proportions of 25%, 50%, and 75% (v:v, based on dry weight). The suitability was evaluated based on the agrochemical properties, earthworm biomass, and phytotoxicity. The final vermicomposts exhibited near-neutral pH values (7.1–7.6), and lower EC values (0.43–0.72 mS/cm) and C:N ratios (14.1–19.9).The content of available nutrients and CEC for all the vermicomposts exceeded those of the control compost (without earthworms). For vermicomposts, the average values of NO3-N, AP, AK, and CEC were 53, 517, 1362 mg/kg, and 158 cmol/kg, respectively. The total contents of heavy metals increased in all vermicompost treatments compared to control composts with the following average final percentages: Zn (2.0%), Cr (15.5%), Pb (23.4%), and Cu (44.3%), but these amounts were safe for application in agroforestry. The addition of sugarcane bagasse to green waste significantly increased the content of total humic substance, humic acid and urease activity, acid and alkaline phosphatase activity, and Eiseniafetida reproduction. The addition of 25% sugarcane bagasse to green waste decreased the toxicity to germinating seeds. These results revealed that vermicomposting is a feasible way to degrade green waste into a value-added chemical product.  相似文献   

11.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

12.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

13.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   

14.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

15.
● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system ● Anammox coupled FeS denitrification was responsible for NH4+/NO3 removal ● Sulfammox, Feammox and Anammox occurred for NH4+ removal Thiobacillus, Nitrospira , and Ca. Kuenenia were key functional microorganisms An autotrophic denitrifying bioreactor with iron sulfide (FeS) as the electron donor was operated to remove ammonium (NH4+) and nitrate (NO3) synergistically from wastewater for more than 298 d. The concentration of FeS greatly affected the removal of NH4+/NO3. Additionally, a low hydraulic retention time worsened the removal efficiency of NH4+/NO3. When the hydraulic retention time was 12 h, the optimal removal was achieved with NH4+ and NO3 removal percentages both above 88%, and the corresponding nitrogen removal loading rates of NH4+ and NO3 were 49.1 and 44.0 mg/(L·d), respectively. The removal of NH4+ mainly occurred in the bottom section of the bioreactor through sulfate/ferric reducing anaerobic ammonium oxidation (Sulfammox/Feammox), nitrification, and anaerobic ammonium oxidation (Anammox) by functional microbes such as Nitrospira, Nitrosomonas, and Candidatus Kuenenia. Meanwhile, NO3 was mainly removed in the middle and upper sections of the bioreactor through autotrophic denitrification by Ferritrophicum, Thiobacillus, Rhodanobacter, and Pseudomonas, which possessed complete denitrification-related genes with high relative abundances.  相似文献   

16.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

17.
• Capacitive biochar was produced from sewage sludge. • Seawater was proved to be an alternative activation agent. • Minerals vaporization increased the surface area of biochar. • Molten salts acted as natural templates for the development of porous structure. Sewage sludge is a potential precursor for biochar production, but its effective utilization involves costly activation steps. To modify biochar properties while ensuring cost-effectiveness, we examined the feasibility of using seawater as an agent to activate biochar produced from sewage sludge. In our proof-of-concept study, seawater was proven to be an effective activation agent for biochar production, achieving a surface area of 480.3 m2/g with hierarchical porosity distribution. Benefited from our design, the catalytic effect of seawater increased not only the surface area but also the graphitization degree of biochar when comparing the pyrolysis of sewage sludge without seawater. This leads to seawater activated biochar electrodes with lower resistance, higher capacitance of 113.9 F/g comparing with control groups without seawater. Leveraging the global increase in the salinity of groundwater, especially in coastal areas, these findings provide an opportunity for recovering a valuable carbon resource from sludge.  相似文献   

18.
• High hydrogen yield is recovered from thermal-alkaline pretreated sludge. • Separating SFL by centrifugation is better than filtration for hydrogen recovery. • The cascaded bioconversion of complex substrates in MECs are studied. • Energy and electron efficiency related to substrate conversion are evaluated. The aim of this study was to investigate the biohydrogen production from thermal (T), alkaline (A) or thermal-alkaline (TA) pretreated sludge fermentation liquid (SFL) in a microbial electrolysis cells (MECs) without buffer addition. Highest hydrogen yield of 36.87±4.36 mgH2/gVSS (0.026 m3/kg COD) was achieved in TA pretreated SFL separated by centrifugation, which was 5.12, 2.35 and 43.25 times higher than that of individual alkaline, thermal pretreatment and raw sludge, respectively. Separating SFL from sludge by centrifugation eliminated the negative effects of particulate matters, was more conducive for hydrogen production than filtration. The accumulated short chain fatty acid (SCFAs) after pretreatments were the main substrates for MEC hydrogen production. The maximum utilization ratio of acetic acid, propionic acid and n-butyric acid was 93.69%, 90.72% and 91.85%, respectively. These results revealed that pretreated WAS was highly efficient to stimulate the accumulation of SCFAs. And the characteristics and cascade bioconversion of complex substrates were the main factor that determined the energy efficiency and hydrogen conversion rate of MECs.  相似文献   

19.
• The long-period groundwater evolution was identified by hydrochemical signatures. • The dominant processes in the groundwater evolution were verified. • Groundwater quality in the coastal areas was susceptible to deterioration due to SI. • Groundwater contamination arose from fertilizer, livestock manure & domestic sewage. The evolution of hydrochemical compositions influenced by long-period interactions between groundwater and the geo-environment is a fundamental issue for exploring groundwater quality and vulnerability. This study systematically investigated the hydrochemical processes and anthropogenic interference occurring in the river basin by bivariate plots, Gibbs diagrams, saturation index, and the major ions ratios. Apparent changes in groundwater hydrochemistry have been observed in the study area, illustrating the origins of major ions are affected by various internal and external factors. Results highlighted that TDS varied from freshwater to brackish water, ranging between 187.90 and 2294.81 mg/L. Ca2+ and HCO3 are the dominant ions in the studied samples. The results gained by Gibbs diagrams, bivariate plots, saturation index, and the major ions ratios demonstrated that minerals dissolution/precipitation, cation exchange, and human inputs play crucial roles in the unconfined aquifers. Moreover, the overuse of nitrogen fertilizer, livestock manure, and industrial/domestic sewage led to nitrate and nitrite contamination and brought significant challenges to the surrounding hydrogeo-environment. The present study could make an unambiguous identification of natural processes and anthropogenic interventions influencing groundwater hydrochemistry’s long-period evolution and create a preliminary strategy for groundwater resources management.  相似文献   

20.
• Comammox bacteria have unique physiological characteristics. • Comammox bacteria are widely distributed in natural and artificial systems. • Comammox bacteria have the potential to reduce N2O emissions. • Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment. • Comammox bacteria have significant potential for enhancing total nitrogen removal. Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号