首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The constrained ordination method from quantitative ecology was utilized to assess the relationship between landscape patterns and nonpoint‐source (NPS) pollution for the purpose of identifying effective water‐quality improvement practices in Danjiangkou Reservoir (DJKR) basin, China. The soil and water assessment tool (SWAT) was applied to simulate NPS pollution and the Fragstats model was applied to calculate the landscape metrics. The study concluded that organic nutrients formed the main NPS pollutant in the DJKR basin and that most of the NPS pollution occurred along with soil loss. Based on partial redundancy analysis, the conclusion that landscape metrics were significantly correlated to NPS pollution indices was obtained. Specifically, the composition of LULC (land use/land cover) was the most effective factor to estimate NPS pollution. Dry cultivated land was identified as the main source of NPS pollution, and paddy fields were characterized with the most intensive soluble nutrients loss. In addition, the reason that fragmented and complex landscape patterns exacerbate NPS pollution was that natural landscape composed most of this area. Moreover, the fragmented natural landscape indicated intensive agricultural activities that were the crucial trigger for NPS pollution. Combined with the economic condition in China, Conversion of Cropland to Forests Program (CCFP) should be conducted selectively and gradually in the DJKR basin.  相似文献   

2.
ABSTRACT: The state of Minnesota seeks to reduce phosphorus loading to the Minnesota River by 40 percent from current levels. Looking at one major watershed in the river basin, we examined the cost effectiveness of targeting versus not targeting specific practices or regions within a watershed for controlling nonpoint phosphorus pollution from agriculture. Integrating biophysical simulation results from current and alternative farming systems with production cost and return estimates enabled us to analyze this policy. Our results indicated it is more cost effective to reduce nonpoint pollution by targeting particular regions or practices in a watershed compared to not targeting. Specifically, producers farming on cropland susceptible to erosion in close proximity to water will appreciably reduce phosphorus nonpoint pollution loading potential by switching from conventional tillage to conservation tillage and by reducing phosphorus fertilization levels to those recommended by the state extension service. Efforts to target those producers in the Minnesota River Basin could reduce potential transaction costs and compensation from “takings” by approximately $50 million (74 percent) over not targeting.  相似文献   

3.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

4.
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.  相似文献   

5.
ABSTRACT: The State of Texas has initiated the development of a Total Maximum Daily Load program in the Bosque River Watershed, where point and nonpoint sources of pollution are a concern. Soil Water Assessment Tool (SWAT) was validated for flow, sediment, and nutrients in the watershed to evaluate alternative management scenarios and estimate their effects in controlling pollution. This paper discusses the calibration and validation at two locations, Hico and Valley Mills, along the North Bosque River. Calibration for flow was performed from 1960 through 1998. Sediment and nutrient calibration was done from 1993 through 1997 at Hico and from 1996 through 1997 at Valley Mills. Model validation was performed for 1998. Time series plots and statistical measures were used to verify model predictions. Predicted values generally matched well with the observed values during calibration and validation (R2≥ 0.6 and Nash‐Suttcliffe Efficiency ≥ 0.5, in most instances) except for some underprediction of nitrogen during calibration at both locations and sediment and organic nutrients during validation at Valley Mills. This study showed that SWAT was able to predict flow, sediment, and nutrients successfully and can be used to study the effects of alternative management scenarios.  相似文献   

6.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

7.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

8.
A modeling system that couples a land-use-based export coefficient model, a stream nutrient transport equation, and Bayesian statistics was developed for stream nitrogen source apportionment. It divides a watershed into several sub-catchments, and then considers the major land-use categories as stream nitrogen sources in each sub-catchment. The runoff depth and stream water depth are considered as the major factors influencing delivery of nitrogen from land to downstream stream node within each sub-catchment. The nitrogen sources and delivery processes are lumped into several constant parameters that were calibrated using Bayesian statistics from commonly available stream monitoring and land-use datasets. This modeling system was successfully applied to total nitrogen (TN) pollution control scheme development for the ChangLe River watershed containing six sub-catchments and four land-use categories. The temporal (across months and years) and spatial (across sub-catchments and land-use categories) variability of nonpoint source (NPS) TN export to stream channels and delivery to the watershed outlet were assessed. After adjustment for in-stream TN retention, the time periods and watershed areas with disproportionately high-TN contributions to the stream were identified. Aimed at a target stream TN level of 2 mg L?1, a quantitative TN pollution control scheme was further developed to determine which sub-catchments, which land-use categories in a sub-catchment, which time periods, and how large of NPS TN export reduction were required. This modeling system provides a powerful tool for stream nitrogen source apportionment and pollution control scheme development at the watershed scale and has only limited data requirements.  相似文献   

9.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

10.
/ Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment  相似文献   

11.
ABSTRACT: Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to separate. To better understand NPS pollution sources in mixed use watersheds, surface water samples were taken at three sites that varied in land use to examine the effect of land use on water quality. Within the group of three watersheds, one was predominately agriculture (Agricultural), one was predominately urban (Urban), and a third had relatively equal representation of both types of land uses (Mixed). Nitrogen (N), phosphorus (P), total suspended solids (TSS), turbidity, pH, temperature, and streamflow were measured for one year. Comparisons are made among watersheds for concentration and fluxes of water quality parameters. Nitrate and orthophosphate concentrations were found to be significantly higher in the Agricultural watershed. Total suspended solids, turbidity, temperature, and pH, were found to be generally higher in the Urban and Mixed watersheds. No differences were found for streamflow (per unit area), total phosphorus, and ammonium concentrations among watersheds. Fluxes of orthophosphate were greater in the Agricultural watershed that in the Urban watershed while fluxes of TSS were greater in the Mixed watershed when compared to the Agricultural watershed. Fluxes of nitrate, ammonium, and total phosphorus did not vary among watersheds. It is apparent from the data that Agricultural land uses are generally a greater source of nutrients than the Urban land uses while Urban land uses are generally a greater source of suspended sediment.  相似文献   

12.
Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act’s Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.  相似文献   

13.
ABSTRACT: This paper examines the relationship between best-management practices, institutional needs, and improved water quality within the watersheds of Wisconsin's program for controlling rural nonpoint source pollution. The first section describes the federal requirements for state nonpoint source programs and the legislative and management methods the state of Wisconsin uses to put those requirements into practice. The emphasis of the paper, described in the second section, is the institutional difficulty in evaluating the success of a large, integrated water quality program. Measurements which are investigated include (1) watershed water quality before and after implementation of BMPs; (2) program participation as measured by eligible vs. participating landowners, BMPs considered necessary vs. BMPs implemented, or dollars allocated to the NPS program vs. dollars expended; and (3) institutional goal coordination and management effectiveness. It is found that, despite the size and sophistication of Wisconsin's NPS program, there is little if any improvement in ambient water quality in these watersheds, probably because of a general lack of adequate participation in this voluntary program.  相似文献   

14.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

15.
ABSTRACT: A spatial decision support system (SDSS) was developed to assess agricultural nonpoint source (NPS) pollution using an NPS pollution model and geographic information systems (GIS). With minimal user interaction, the SDSS assists with extracting the input parameters for a distributed parameter NPS pollution model from user-supplied GIS base layers. Thus, significant amounts of time, labor, and expertise can be saved. Further, the SDSS assists with visualizing and analyzing the output of the NPS pollution simulations. Capabilities of the visualization component include displays of sediment, nutrient, and runoff movement from a watershed. The input and output interface techniques/algorithms used to develop the SDSS, along with an example application of the SDSS, are described.  相似文献   

16.
ABSTRACT: Nonpoint sources (NPS) are an important and continuing source of toxic and conventional pollutants to surface waters. The Clean Water Act amendments of 1987 call for the regulation of these sources through the use of Best Management Practices (BMP). However, BMP implementation has generally occurred on a voluntary basis. This paper proposes a regulatory mechanism to control nonpoint source pollution. The regulatory mechanism involves the development of consortia, made up of all parties potentially responsible for NPS pollution, the development of wasteload allocations that coordinate the pollutant contributions from both point and nonpoint sources in a stream segment, and the issuance of permits to consortia to regulate the impacts of NPS pollution and ensure achievement of state or federal Water Quality Criteria and Standards.  相似文献   

17.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

18.
ABSTRACT: To quantify the effectiveness of best management practice (BMP) implementation on runoff, sediment, and nutrient yields from a watershed, the Nomini Creek watershed and water quality monitoring project was initiated in 1985, in Westmoreland County, Virginia. The changes in nonpoint source (NPS) loadings resulting from BMPs were evaluated by comparing selected parameters from data series obtained before, during, and after periods of BMP implementation. The results indicated that the watershed-averaged curve number, sediment, and nutrient (N and P) concentrations were reduced by approximately 5, 20, and 40 percent, respectively, due to BMP implementation. The nutrient yield model developed by Frere et al. (1980) was applied to the water quality parameters from 175 storms, but it failed to adequately describe the observed phenomena. Seasonal changes in nutrient availability factors were not consistent with field conditions, nor were they significantly different in the pm- and post-BMP periods. An extended period of monitoring, with intensive BMP implementation over a larger portion of the watershed, is required to identify BMP effectiveness.  相似文献   

19.
ABSTRACT: A combinatorial optimization procedure for best management practice (BMP) placement at the watershed level facilitates selection of cost effective BMP scenarios to control non point source (NFS) pollution. A genetic algorithm (GA) was selected from among several optimization heuristics. The GA combines an optimization component written in the C++ language with spatially variable NFS pollution prediction and economic analysis components written within the Arc View geographic information system. The procedure is modular in design, allowing for component modifications while maintaining the basic conceptual framework. An objective function was developed to lexicographically optimize pollution reduction followed by cost increase. Scenario cost effectiveness is then calculated for scenario comparisons. The NPS pollutant fitness score allows for evaluation of multiple pollutants, based on prioritization of each pollutant. The economic component considers farm level public and private costs, cost distribution, and land area requirements. Development of a sediment transport function, used with the Universal Soil Loss Equation, allows the optimization procedure to run within a reasonable timeframe. The procedure identifies multiple near optimal solutions, providing an indication of which fields have a more critical impact on overall cost effectiveness and flexibility in the final solution selected for implementation. The procedure was demonstrated for a 1,014‐ha watershed in the Ridge and Valley physiographic region of Virginia.  相似文献   

20.
构建增江流域非点源污染数据库,包括DEM、土地利用,土壤类型,气象数据等,应用分布式流域水文模型SWAT(Soil andWater Assessment Tool,swat 2009版)对增江流域的非点源污染进行模拟。模型运行阶段为2000-2003年,分别应用2000-2001年和2002-2003年的实测月均流量及硝酸盐氮监测数据对模型的参数率定和验证,采用决定系数R2和Nash-Suttcliffe系数对模拟结果进行评定。其中水文模拟的R2均>0.9,Nash-Suttcliffe模型效率系数均>0.8;硝酸盐氮模拟的R2均>0.7,Nash-Suttcliffe模型效率系数均>0.6,表明SWAT模型在增江流域具有较好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号