首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT: Estimations of runoff volumes from urban areas can be made by the equation Q = a A σ(Pe– b), where Q is the runoff volume, a is the part of the total area A Contributing to runoff, Pe is the rainfall amount for a single event, and b is the initial rainfall losses. For the evaluation of a and b, rainfall/runoff measurements were made in five areas of sizes between 0.035 km2 and 1.450 km2. By linear regression analysis of rainfall volumes versus runoff volumes, the initial rainfall losses were found to vary from 0.38 mm to 0.70 mm for the different areas. The parts of the areas contributing to runoff were found to be proportional to the impermeable parts of the mas. The equation is applicable in urban areas with well defined paved surfaces and roofs and with a negligible amount of runoff from permeable areas.  相似文献   

2.
ABSTRACT: Rainfall is a significant source of some constituents, particularly nitrogen species, in storm runoff from urban catchments. Median contributions of rainfall to storm runoff loads of 12 constituents from 31 urban catchments, representing eight geographic locations within the United States, ranged from 2 percent for suspended solids to 74 percent for total nitrite plus nitrate nitrogen. The median contribution of total nitrogen in rainfall to runoff loads was 41 percent. Median contributions of total-recoverable lead in rainfall to runoff loads varied by as much as an order of magnitude between catchments in the same geographic location. This indicates that average estimates of rainfall contributions to constituent loading in storm runoff may not be suitable in studies requiring accurate constituent mass-balance computations.  相似文献   

3.
ABSTRACT: Stationarity of rainfall statistical parameters is a fundamental assumption in hydraulic infrastructure design that may not be valid in an era of changing climate. This study develops a framework for examining the potential impacts of future increases in short duration rainfall intensity on urban infrastructure and natural ecosystems of small watersheds and demonstrates this approach for the Mission/Wagg Creek watershed in British Columbia, Canada. Nonstationarities in rainfall records are first analyzed with linear regression analysis, and the detected trends are extrapolated to build potential future rainfall scenarios. The Storm Water Management Model (SWMM) is used to analyze the effects of increased rainfall intensity on design peak flows and to assess future drainage infrastructure capacity according to the derived scenarios. While the framework provided herein may be modified for cases in which more complex distributions for rainfall intensity are needed and more sophisticated stormwater management models are available, linear regressions and SWMM are commonly used in practice and are applicable for the Mission/Wagg Creek watershed. Potential future impacts on stream health are assessed using methods based on equivalent total impervious area. In terms of impacts on the drainage infrastructure, the results of this study indicate that increases in short duration rainfall intensity may be expected in the future but that they would not create severe impacts in the Mission/Wagg Creek system. The equivalent levels of imperviousness, however, suggest that the impacts on stream health could be far more damaging.  相似文献   

4.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

5.
ABSTRACT: Public Law 92–00 has mandated the need for evaluating the impact of nonpoint source pollution on receiving water quality, primarily through Section 208 Areawide Planning. The Management of Urban Non-Point Pollution (MUNP) model was developed to estimate the accumulation of eight non-point pollutants on urban streets, their removal by both rainfall and street sweeping operations. The model can simulate the following pollutants: total solids or sediment-like material, volatile solids, five-day biochemical oxygen demand, chemical oxygen demand, Kjeldahl nitrogen, nitrates, phosphates, and total heavy metals. The simulated results can be used for investigation of non-point pollution management alternatives. The model is capable of reflecting variation in such diverse factors as physical and chemical characteristics of accumulated pollutants, land use characteristics, rainfall characteristics, street sweeper characteristics, roadway characteristics, and traffic conditions. By using mean estimates of many input variables for large segments of a city, the MUNP model could be used to quickly assess the magnitude of pollutants annually entering receiving waterways due to nonpoint source pollution alone. If the results indicate that non-point pollution loadings are sizeable and require futher analysis, the MUNP model could be used to define the specific nonpoint source pollution areas within a city. Hypothetical locations and actual rainfall data for Washigton D.C. were used to demonstrate some capabilities of the MUNP model.  相似文献   

6.
ABSTRACT: Analysis of a small urban watershed's flooding was undertaken to determine causes and solutions to this serious environmental hazard affecting University Circle, the cultural heart of Greater Cleveland. Doan Brook is a small, highly disturbed urban stream draining 11.3 square miles. Much of the stream coridor and associated park land is owned by the public. The upper watershed lies in the communities of Shaker Heights and Cleveland Heights who lease park land from Cleveland. Two 50-year floods seriously affected the Circle area in August 1975 generating over $1 million in damages. These events resulted from excessive rainfall triggering rapid earth movement of valley walls in the upper watershed, decreased basin lag time from the infilling of several small upland lakes, a seriously undersized stream channel and storm culvert (at University Circle), and complex institutional arrangements between the three communities in the watershed. Suggestions are presented for a methodology to resolve the technical aspects of the flooding problem.  相似文献   

7.
ABSTRACT: Regression models are presented that can be used to estimate mean loads for chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus nitrogen, total phosphorous, dissolved phosphorous, total copper, total lead, and total zinc at unmonitored sites in urban areas. Explanatory variables include drainage area, imperviousness of drainage basin to infiltration, mean annual rainfall, a land-use indicator variable, and mean minimum January temperature. Model parameters are estimated by a generalized-least-squares regression method that accounts for cross correlation and differences in reliability of sample estimates between sites. The regression models account for 20 to 65 percent of the total variation in observed loads.  相似文献   

8.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

9.
ABSTRACT: Drawing an analogy between the popular Soil Conservation Service curve number (SCS‐CN) method based infiltration and metal sorption processes, a new partitioning curve number (PCN) approach is suggested for partitioning of heavy metals into dissolved and particulate bound forms in urban snowmelt, rainfall/runoff, and river flow environments. The parameters, the potential maximum desorption, ψ, and the PCN analogous to the SCS‐CN parameters S and CN, respectively, are introduced. Under the condition of snowmelt, PCN (or ψ) is found to generally rely on temperature, relative humidity, pH, and chloride content; during a rainstorm, ψ is found to depend on the alkalinity and the pH of the rainwater; and in the river flow situation, PCN is found to generally depend on the temperature, pH, and chloride content. The advantage of using PCN instead of the widely used partitioning parameter, Kd, is found to lie in the PCN's efficacy to distinguish the adsorption (or sorption) behavior of metals in the above snowmelt, rainfall/runoff, and river flow situations, analogous to the hydrological behavior of watersheds.  相似文献   

10.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

11.
ABSTRACT: Runoff depth and pollutant loading (Biological Oxygen Demand [BOD5], Total Suspended Solids [TSS], Total Kjeldahl Nitrogen [TKN] and lead [Pb]) computations of urban stormwater runoff from four small sites (i.e., 14.7–58.3 ac) in South Florida were performed using the Soil Conservation Service (SCS) hydrology method and empirical equations developed by the U.S. Environmental Protection Agency (EPA). Each site had different predominant land uses (i.e., low density residential, high density residential, highway and commercial). Quantity and quality data from 95 storm events at these sites were measured by the U.S. Geological Survey (USGS), and used for calibration of the methodology to derive appropriate input parameters. Calibrated input parameters were developed for each land use to test the applicability of the methodology in small sub-tropical urban watersheds, and to provide hydrologists with a way to select appropriate parameter values for planning studies. A total of 16 independent rainfall events were used for verification of the methodology. Comparisons of predicted versus measured data for both hydrographs and pollutant loadings were performed.  相似文献   

12.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

13.
ABSTRACT As urban expansion outstrips water supplies, the usual solution is to build pipelines to bring in water from sources farther afield. Such water supplies may act as either a leader of urban development or as a follower. In either case, this engineering approach to the provision of water has fostered less than optimal utilization of regional water and land resources for urban growth. More efficient utilization of these resources is achieved when water supply development and urban growth planning are conjoint activities. Water supply planners and land use planners, working together, are able to generate and evaluate the full range of urban development options, including water demand management through conservation. Preferred regional growth plans are achieved using the best mix of water supply and urban growth. The result is a reduced rate of water supply development and a reduction of urban expansion on prime lands. This partnership approach is demonstrated for the Calgary Region under two levels of water conservation.  相似文献   

14.
With urban populations worldwide expected to witness substantial growth over the next decades, pressure on urban land and resources is projected to increase in response. For policy-makers to adequately meet the challenges brought about by changes in the dynamics of urban areas, it is important to clearly identify and communicate their causes. Floods in Douala (the most densely populated city in the central African sub-region), are being associated chiefly with changing rainfall patterns, resulting from climate change in major policy circles. We investigate this contention using statistical analysis of daily rainfall time-series data covering the period 1951–2008, and tools of geographic information systems. Using attributes such as rainfall anomalies, trends in the rainfall time series, daily rainfall maxima and rainfall intensity–duration–frequency, we find no explanation for the attribution of an increase in the occurrences and severity of floods to changing rainfall patterns. The culprit seems to be the massive increase in the population of Douala, in association with poor planning and investment in the city's infrastructure. These demographic changes and poor planning have occurred within a physical geography setting that is conducive for the inducement of floods. Failed urban planning in Cameroon since independence set the city up for a flood-prone land colonization. This today translates to a situation in which large portions of the city's surface area and the populations they harbor are vulnerable to the city's habitual annual floods. While climate change stands to render the city even more vulnerable to floods, there is no evidence that current floods can be attributed to the changes in patterns of rainfall being reported in policy and news domains.  相似文献   

15.
ABSTRACT The role of water resources in the urban economic and social environment, particularly in the inner city, has never been established to the degree necessary for making informed decisions on investments in urban waterway and shoreline improvements. The basic tools for measuring psychological and social impacts of waterway and shoreline developments in the inner city have not been fully developed and utilized to date. However, through a detailed analysis of the water resources in the urban core area of Cleveland, it appears that deliberate development of water-based recreation and other environmental resources can lead to improvement in some of the social problems of the inner city. In recreation analysis, there is currently a great gap between methodologies that are conceptually sound and those that have been applied by urban and water-resources planning agencies. New tools and methodologies can only be used successfully when public agencies are given the institutional and policy means for using them equitably in light of social needs. Present urban-water planning practices have been found to be biased against the inner city, often unintentionally.  相似文献   

16.
ABSTRACT. .A mathematical model for urban watersheds is being developed in stages at the Utah Water Research Laboratory, Utah State University at Logan. In verifying the watershed as a unit, watershed coefficients are determined on the computer, and related to the urbanization characteristics. The second stage of verification consists of dividing the watershed into subzones, and determining the urban parameters within each subzone. Each subzone is then individually modeled, and outflow hydrographs are routed through succeeding downstream subzones to the gaging point. The model thus makes it possible to: (a) develop runoff models for subzone hydrographs within the urban watershed, and (b) account for spatial variations of storm and watershed characteristics. An attempt was also made to analytically model the outflow hydrograph based on storm and watershed characteristics.  相似文献   

17.
ABSTRACT: Major hydrometeorological factors pertinent to defining and understanding the hydrologic characteristics of urban and other small-basin storms were investigated using data from a continuous 44-year operation of a recording raingage network in Chicago. Factors included: the frequency distribution of basin mean rainfall and its relation to storm maximum precipitation; the spatial distribution characteristics of each storm, including storm rainfall reduction factors which are widely used in hydrologic design problems; and weather-related causes related to the frequency and intensity of severe rainstorms in the Chicago area in recent years. Results have indicated that urban mean rainfall frequencies were overestimated in earlier studies in which they were derived from point/areal mean rainfall ratios obtained from much shorter records on rural networks. Reduction factors were found to vary between urban and rural storm systems due to urban-related effects. Two factors were found to be potential contributors to the characteristics of severe rainstorm occurrences at Chicago. These include urban-induced rain enhancement and an upward climatic trend in the occurrence of heavy rainfall events during the sampling period. Study results should be generally applicable to other large urban areas in the Midwest and other regions of similar precipitation climate.  相似文献   

18.
ABSTRACT: The technology of urban stormwater management has far outpaced its actual application in new urban development. This article documents that implementation gap, but shows that state and local governmental measures, particularly storm drainage regulations, can lead to improved performance in the private sector. Although state stormwater management programs are in their infancy, they are already having a measurable effect in stimulating the adoption of local governmental programs to manage urban storm water. Pioneering state programs in Maryland, New Jersey, and Pennsylvania, described in this article, provide models for states contemplating the formulation of stormwater management programs.  相似文献   

19.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

20.
ABSTRACT: Increasing costs and competition for water have resulted in pressure to manage urban water demand through conservation programs. Metering, pricing, devices, restrictions, building code changes, and horticultural practices have all been effective in reducing average residential water use. Some conservation means are specifically aimed at reducing peak demands but these usually reduce average usage as well. Combined programs of conservation can be expected to reduce urban demand by as much as 25–30 percent over the long term. Restrictions can reduce water usage on the short term even further. The success of conservation programs is as dependent on the effectiveness of public education and information dissemination as on the conservation practices themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号