首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth, accumulation and intracellular speciation and distribution of copper (Cu) in Sesbania drummondii was studied using scanning-electron microscopy (SEM), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The growth of seedlings was assessed in terms of biomass accumulation. The growth of the seedling was enhanced by 73.5% at a low Cu concentration (50 mg l−1) compared to the control treatment. Additionally, seedling growth was inhibited by 18% at 300 mg l−1 Cu with respect to the control. Copper concentration in roots and shoots was increased with increasing Cu concentration in the growth solution. The accumulation of Cu was found to be higher in roots than in the shoots. At a concentration of 300 mg l−1 Cu, the roots accumulated 27,440 mg Cu kg−1 dry weight (dw) while shoots accumulated 1282 mg Cu kg−1 dw. Seedlings were assessed for photosynthetic activity by measuring chlorophyll a fluorescence parameters: Fv/Fm and Fv/F0 values. Photosynthetic integrity was not affected by any of the Cu treatments. The X-ray absorption spectroscopic (XAS) studies showed that Cu was predominantly present as Cu(II) in Sesbania tissue. In addition, from the XAS studies it was shown that the Cu exists in a mixture of different coordination states consisting of Cu bound to sugars and small organic acids with some possible precipitated copper oxide. From the EXAFS studies, the coordination of Cu was determined to have four equatorial oxygen(nitrogen) ligands at 1.96 Å and two axial oxygen ligands at 2.31 Å. Scanning-electron microscopy studies revealed the distribution of Cu within the seedlings tissues, predominantly accumulated in the cortical and vascular (xylem) regions of root tissues. In the stem, most of the Cu was found within the xylem tissue. However, the deposition of Cu within the leaf tissues was in the parenchyma. The present study demonstrates the mechanisms employed by S. drummondii for Cu uptake and its biotransformation.  相似文献   

2.
Polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran and dioxin-like polychlorinated biphenyl concentrations in human blood, lung, liver, bile, pancreas, spleen, kidney and mesentery fat were determined to assess the concentrations and distribution of these chemicals in human tissues from 20 donors. The mean TEQ concentrations in blood, lung, liver, bile, spleen, pancreas, kidney and mesentery fat were 119, 178, 228, 50, 113, 163, 138 and 139 pg TEQ/g lipid, respectively. Parallel levels were seen in the blood, spleen, kidney and mesentery fat; in the lungs and pancreas, the levels were somewhat higher. Among the organ tissues samples, the highest concentration was observed in the liver and the lowest in the bile. Mean total-TEQ concentration of the liver was about 4.5 times higher than that of bile. Positive correlations were observed among the concentrations of dioxins in various tissues. However, the concentrations in bile were not correlated with any tissues. It is suggested that the distribution behavior of dioxin-like congeners in human tissues varies among tissues and the kinds of congeners ingested. To evaluate the relationship between the accumulation levels of dioxins and their pathophysiological significance or risk, data must be accumulated from a more extensive group of human samples.  相似文献   

3.
Fujise H  Annoura T  Sasawatari S  Ikeda T  Ueda K 《Chemosphere》2002,46(9-10):1505-1511
Endocrine disrupters such as sex hormone-like chemicals and the non-physiological ligands for aryl hydrocarbon receptor (AhR) exert many adverse biological effects. The ligands for AhR disturb gene expression downstream of the gene induced by estrogen receptor at a very low concentration. Thus, transepithelial transport and cellular accumulation of cortisol (COR) and estrogen as congeners of sex hormone-like chemicals, and 3,3,4,4-tetrachlorobiphenyl (TeCB) as one of the ligands for AhR were examined in a monolayer of porcine kidney cells transfected with human P-glycoprotein (LLC-COL). The net basal-to-apical transport of COR increased in LLC-COL compared to that in the wild type cells (LLC-PK1) the same as in vinblastine, whereas the net transport of estradiol (EST) was not detected in either cell group. Though the diffusion transports of EST for both directions, basal-to-apical and apical-to-basal, were higher than that of COR, cellular accumulation of EST was higher than that of COR. Transepithelial transport of TeCB was very low and the net basal-to-apical transport was not detected, while it was highly accumulated in the epithelial cells. The accumulation was slightly higher in LLC-COL than in LLC-PK1 at high dose.  相似文献   

4.
Bottom sediment samples from 121 sites of the Lake Albufera of Valencia were analyzed. Dieldrin, endrin, heptachlor and op′-DDT were not detected (<0.01 ng g−1) in 88–93% of the sites. Aldrin and HCB concentration ranges were between <0.01 and 0.1 ng g−1 in 86% and 94% of the sites, respectively. Heptachlor-epoxide and lindane 95% confidence intervals were 0.2–0.5 and 0.06–0.12, respectively. The greatest average concentration corresponds to pp′-DDE, pp′-DDD and pp′-DDT. The sum of six isomers and derivatives of the DDT average concentration reaches 2.1 ng g−1, as opposed to 2.7 ng g−1 for the sum of 13 pesticides considered. In the site with a major contamination, 27.0 ng g−1 of pp′-DDD and 12.8 ng g−1 of pp′-DDT were accumulated. The DDE:DDT proportion average was 0.37, indicating an aged DDT contamination. Concentrations of pesticides in sediments were compared to three sediment quality guidelines, and indicated that a low biological effects level can be expected in either sediments or aquatic organisms.  相似文献   

5.
Leung KM  Ooi VE 《Chemosphere》2000,41(1-2):155-159
The distribution of thallium (Tl) in the body and its toxic effect on the histology and function of the liver and kidney of rats after Tl administration were investigated using biochemical and histopathological assays. Male albino rats exhibited a markedly dose-dependent increase in the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) at 16 h after an intraperitoneal injection of 30, 60 or 120 mg/kg Tl. The serum level of creatinine in the rats injected with 30 mg/kg Tl, elevated significantly after 4 days of administration. The distribution of Tl in the tissues of intoxicated rats was uneven. The content of Tl was found to be highest in the kidney, followed by ileum, stomach and liver. Histological examination demonstrated frequent occurrence of hepatocyte necrosis and vacuolation in the liver and pathological changes of renal tubules in the treated rats.  相似文献   

6.
The carcinogenicity of 2,3,7,8-TCDD at multiple organ sites in animals has been well established by several cancer bioassays. Results of two of the most notable of these, the Kociba et al. (1978) rat feeding study and the National Toxicology Program (1980) gavage study in rats and mice showed hepatocellular carcinomas in two strains of female rats and male and female mice. Other tumor sites included carcinomas of the lung, tongue, hard palate and nasal turbinates, thyroid, and subcutaneous tissue. The evidence for carcinogenicity of 2,3,7,8-TCDD in animals is regarded as “sufficient” using the classification system of the International Agency for Research on Cancer (IARC).

Two Swedish epidemiologic case-control studies (Hardell and Sandstrom, 1979; Eriksson et al. 1979, 1981) reported a significant five- to sevenfold excess risk of soft-tissue sarcomas (STS) from occupational exposure to chlorinated phenoxyacetic acid herbicides and/or chlorophenols. Additionally, several small cohort studies collectively exhibited an unusual cluster of STS, significantly increased over combined expected incidence. Problems with these studies do not appear to be sufficient to discount this excess risk. The human evidence alone for the carcinogenicity of 2,3,7,8-TCDD is “inadequate” using the IARC classification. However, for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols, the human evidence is considered to be “limited.” The overall evidence for carcinogenicity considering both animal and human studies would place 2,3,7,8-TCDD alone in the IARC category 2B, meaning that the substance is probably carcinogenic in humans. The overall weight of evidence for 2,3,7,8-TCDD in combination with chlorinated phenoxyacetic acid herbicides and/or chlorophenols is regarded as IARC category 2A, also meaning that they are probably carcinogenic for humans.

Using current EPA methodology for quantitatively estimating cancer risks, several animal data sets have been analyzed. Comparing the results, the upper-limit incremental unit risk estimate is 1.6 × 10−2 for a lifetime exposure of 1 ng/kg/day. This estimate is derived from a lifetime feeding study (Kociba et al., 1978) in which 2,3,7,8-TCDD induced tumors of the liver, lungs, hard palate, and nasal turbinates in female rats. Incremental unit cancer risks are also extrapolated for lifetime 2,3,7,8-TCDD exposures in water and air. Based on continuous lifetime exposure to 1 ng/L 2,3,7,8-TCDD in drinking water, the upper-limit estimate of extra cancer risk per individual is 4.5 × 10−3. For lifetime exposure to 1 pg 2,3,7,8-TCDD/m3 in the ambient air, the upper-limit individual risk is 3.3 × 10−5.  相似文献   


7.
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 μmol l−1) and herbicide Basagran (5, 20, 35 and 50 nmol l−1) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 μmol l−1) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l−1). The growth of roots was significantly inhibited by higher concentration 5 μmol l−1 of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l−1 of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F0 values and the decrease of FV/FM and ΦII values by application of FLT (0.5 and 5 μmol l−1) and phFLT (0.05, 0.5 and 5 μmol l−1) was recorded. The maximum capacity of PSII (FV/FM) was influenced by the highest (50 nmol l−1) and the effective quantum yield of PSII (ΦII) already by the lowest (5 nmol l−1) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 μmol l−1) of FLT and phFLT and already by the lowest concentration (5 nmol l−1) of Basagran.  相似文献   

8.
A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup®, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and β-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P > 0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l−1 of glyphosate).

The effects of Roundup® on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l−1 of glyphosate. In samples containing 50 and 100 mg l−1 of glyphosate a significant (P < 0.05) increase in Aeromonas spp. counts and accompanying flora was observed.

The acute toxicity of Roundup® and of Roundup® diluted with Albufera lake water to Microtox® luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l−1 and 64.0 mg l−1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.  相似文献   


9.
The accumulation of two heavy metals (chromium (Cr) and cadmium (Cd)) in the liver, kidney and gut of Rana ridibunda exposed to Cr or to a mixture of Cr and Cd was investigated. The concentration of metallothioneins (MTs) in the same tissues was also studied. Both metals accumulated mainly in the kidney. Cr accumulation in the liver and gut was not affected by the presence of Cd. Furthermore, Cr concentration in the kidney was doubled when Cd was present. MT concentration did not increase after Cr treatment but it increased two- to six-fold over control values in mixture-exposed frogs, the highest value being observed in the gut. MTs in the gut could act as a barrier preventing ingested heavy metals from entering the blood stream. MT concentration correlated positively with Cd concentrations in both the liver and the gut of mixture-exposed animals.  相似文献   

10.
Cadmium (Cd) was orally administered in a dose of 100 μg daily for a total of 100 times to investigate the effects of the intake of low (5%) protein diet and sex difference on the amounts of metallothionein (MT) in the liver and kidney. The amount of MT in the liver was significantly increased by the intake of low protein diet. In females, the increase in the amount of MT was proportional to the amount of Cd accumulated. The concentration of copper-thionein in the liver was higher in females than in males and further increased after intake of low protein diet. The levels of MT, cadmium-thionein, zinc-thionein and copper-thionein in the kidney were not influenced by the intake of low protein diet nor did show a sex difference.  相似文献   

11.
Singhal N  Jaffé P  Maier W  Jho EH 《Chemosphere》2007,69(11):1790-1797
This laboratory study explores the effect of growth substrate concentration on the anaerobic degradation of trichloroethylene (TCE) in sand packed columns. In all columns the growth substrate rapidly degraded to gas, that formed a separate phase. Biomass accumulated in the 0–4.8 cm section of the columns in proportion to the influent growth substrate concentration and biomass concentrations in the remaining sections of all columns were similar to the column receiving the lowest substrate concentration. Increases in growth substrate concentration up to 3030 mg-COD l−1 promoted TCE degradation, but a further increase to 14 300 mg-COD l−1 reduced the amount of TCE completely dechlorinated but did not affect the production of chlorinated TCE intermediates. The mathematical model developed here satisfactorily described the enhancement in TCE dehalogenation for substrate concentration up to 3030 mg-COD l−1; reproducing TCE dehalogenation for 14 300 mg-COD l−1 required that the moisture content used in simulation be lowered to 0.1. The study shows that volatilization of TCE can be significant and volatilization losses should be taken into account when anaerobic activity in in-situ bioremediation applications is stimulated via addition of growth substrates. An implication of the modeling simulations is that maintaining a lower, but uniform, substrate concentration over the contaminated region may lead to faster contaminant degradation.  相似文献   

12.
Verge C  Moreno A  Bravo J  Berna JL 《Chemosphere》2001,44(8):1749-1757
In the present work, the influence of Ca2+ concentration on the toxicity of single cut linear alkylbenzene sulfonate (LAS) homologues was studied. Precipitation boundary diagrams for each homologue were obtained, indicating turbid and clear zones depending on the LAS and Ca2+ concentrations. The separation between transparent and turbid zones is given by the so-called precipitation line. LAS toxicity to Daphnia magna was determined at concentrations close to this precipitation line. It was observed that when Ca(LAS)2 precipitation progresses, LAS bioavailability decreases for test animals, and the toxicity diminishes even at high nominal LAS concentrations. According to the “free ion activity model” (FIAM), the toxicity of a given chemical compound is mainly due to the ionic species (Ca2+–LAS) and not due to the precipitated molecule, Ca(LAS)2. The significance of the present study is in connection with the assessment of LAS sorption/precipitation studies in soils and sediments, where in situ toxicity is strongly influenced by Ca2+/Mg2+ ions, according to the results presented in this work.  相似文献   

13.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


14.
Zhang JE  Ouyang Y  Ling DJ 《Chemosphere》2007,67(11):2131-2137
Acid rain is a problem of increasing agricultural, environmental, and ecological concerns worldwide. This study investigated impacts of simulated acid rain (SAR) on cation leaching from the Latosol in south China. Latosol is an acidic red soil and occurs in the tropical rainforest biome. Laboratory experiments were performed by leaching the soil columns with the SAR at a pH range from 2.5 to 7.0 over a 21-day period. A linear increase in effluent K+ concentration was found at the SAR pH 3.0, whereas an exponential decrease in effluent Na+ concentration was observed at all levels of the SAR pH. In general, leaching of Ca2+ and Mg2+ from the Latosol increased as the SAR pH decreased. There was a very good nonlinear correlation between the removal of soil K+ and the SAR pH (R2 = 0.91), a good nonlinear correlation between the removal of soil Mg+2 and the SAR pH (R2 = 0.83), a fairly good nonlinear correlation between the removal of soil Ca+2 and the SAR pH (R2 = 0.56), and no correlation between the removal of soil Na+ and the SAR pH (R2 = 0.06). Our study further revealed that the removal of soil cations such as K+, Ca+2, and Mg+2 can be quantified by the quadratic polynomial equations. In addition, impacts of the SAR on cation leaching depended not only on the SAR pH but also on the original soil pH.  相似文献   

15.
R. Wacker  H. Poiger  C. Schlatter 《Chemosphere》1986,15(9-12):1473-1476
14C-1,2,3,7,8-Pentachloroaibenzodioxin (P5CDD), administered to rats as single oral dose (1.69–1.75 μg/animal, 8.42–10.06 μg/kg) was eliminated with a half life of 29.5±2.7 days from the body of the animals. Residual P5CDD was located mainly in the liver and the adipose tissue. In the bile, polar metabolites of P5CDD were detected but no unmetabolized P5CDD.  相似文献   

16.
Fly ash extracts were fed to male hamster (single dose), male rat (single dose and multiple dose), pregnant and lactating female rat (multiple dose). The retention of four isomers, 2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PnCDD and 2,3,4,7,8-PnCDF, was studied in the liver of the adults, foetuses and liver of the sucklings.

Liver retention was structure dependent and different for both species. Transportation of the isomers via the mother milk was 50–100 times more effective than via the placenta.

After a single intravenous dose of fly ash extract to male rats the elimination of these four isomers was studied in the liver, during a period of 10 days. Elimination rates for 2,3,7,8-TCDD, 1,2,3,7,8-PnCDD and 2,3,4,7,8-PnCDF were in the same range. Pharmacokinetic calculations were done on both tetra congeners, to obtain information about the validity of the published Ke values in the multiple dose experiments with male rats.

For 2,3,7,8-TCDF the Ke value was applicable, but for 2,3,7,8-TCDD the validity of the Ke could not be determined.  相似文献   


17.
T. Tsuda  S. Aoki  M. Kojima  T. Fujita 《Chemosphere》1992,25(12):1945-1951
Bioconcentration and excretion of 8 organophosphorous pesticides were studied for willow shiner ( ). The average bioconcentration factors (BCF) in the whole body of the fish after 24 – 168 hr exposure were 0.8 for dichlorvos, 76 for salithion, 18 for methidathion, 29 for pyridaphenthion, 481 for fenthion and 36 for phosmet, Further, the BCF values of the other pesticides after 168 hr exposure were 713 for phenthoate and 1682 for EPN. The correlation between n-octanol-water partition coefficients (POW) and BCF in willow shiner was investigated for 19 pesticides studied here and already reported. The correlation factor (r) was not so high (0.6819, n=19) but higher (0.9085, n=18) in case excluding captan. The excretion rate constants (k) from the whole body of willow shiner were 0.20 hr−1 for salthion, 0.05 hr−1 for phenthoate, 0.27 hr−1 for methidathion, 0.20 hr−1 for pyridaphenthion, 0.07 hr−1 for fenthion, 0.04 hr−1 for EPN and 0.28 hr−1 for phosmet.  相似文献   

18.
Walker JT  Geron CD  Vose JM  Swank WT 《Chemosphere》2002,49(10):1389-1398
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m−2 s−1 (1.83, 0.63, and 24.19 kg N ha−1 y−1), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NH3, measuring 9.1, 4.3, and 77.6 ng N m−2 s−1 (2.87, 1.35, and 24.50 kg N ha−1 y−1) for NO, NH3, and N2O, respectively. On average, N2O accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though N2O fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was explained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammonium (NH4+) concentration, while N2O flux was positively correlated with soil nitrate (NO3) concentration. Ammonia flux was positively correlated with the ratio of NH4+ to NO3. In the grazed riparian zone, average NH3 and N2O fluxes were not correlated with soil temperature, N concentrations, or moisture. This was likely due to high variability in soil microsite conditions related to cattle effects such as compaction and N input. Nitric oxide flux in the grazed riparian zone was positively correlated with soil temperature and NO3 concentration. Restoration appeared to significantly affect NO flux, which increased ≈600% during the first year following restoration and decreased during the second year to levels encountered at the onset of restoration. By comparing the ratio of total trace gas flux to soil N concentration, we show that the restored riparian zone is likely more efficient than the grazed riparian zone at diverting upper-soil N from the receiving stream to the atmosphere. This is likely due to the recovery of microbiological communities following changes in soil physical characteristics.  相似文献   

19.
Hood ED  Thomson NR  Grossi D  Farquhar GJ 《Chemosphere》2000,40(12):1383-1388
Flushing soils contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) with a permanganate (MnO4) solution has been shown to reduce the solvent content of the soil. Experiments were performed to quantify the rate at which KMnO4 oxidizes aqueous solutions of PCE over a range of concentrations. In a series of homogeneous reactors, aqueous phase PCE concentrations were monitored over time in nine experimental trials with excess oxidant concentrations ranging from 5 to 30 g/l. Analysis of the data was performed to quantify the oxidation reaction order with respect to PCE and KMnO4 and the reaction rate constant. The reaction between PCE and KMnO4 was determined to be first-order with respect to both PCE and KMnO4 with an overall specific reaction rate coefficient of 2.45±0.65 M−1 min−1.  相似文献   

20.
Zhu L  Ruan X  Chen B  Zhu R 《Chemosphere》2008,70(11):1987-1994
A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA+) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg−1. Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l−1. To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA+ (tetramethylammonium), BTMA+, HTMA+ (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg−1). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号